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 ABSTRACT 
 
This document describes the algorithm for Aerosol Detection(ADP) (including smoke/dust detection) 
Product over land and water from the multispectral reflectance measurements observed by the Visible 
Infrared Imaging Radiometer Suite (VIIRS) onboard JPSS. It includes the description of theoretical 
basis, physics of the problem, validation of the product, and assumptions and limitations.  
 
Episodic events, such as smoke and dust outbreaks, impact human health and economy. Therefore, it is 
desirable to have information on the time, location and coverage of these outbreaks for the monitoring 
and forecasting of air quality. JPSS VIIRS is designed to observe the globe with a spatial resolution of 
750m at nadir in the visible, near-IR, and IR bands respectively. Taking advantage of the unique 
capability of JPSS VIIRS, ADP product will be produced with an algorithm designed to take advantage 
of various spectral measurements.   
 
Aerosol detection algorithm is based on the fact that smoke/dust exhibits features of spectral dependence 
and contrast over both visible and infrared spectrum that are different from clouds, surface, and clear-
sky atmosphere. The fundamental principle of the detection algorithm depends on threshold tests which 
separate smoke/dust from cloud and clear-sky over water and land. 
 
By using Suomi National Polar-orbiting Operational Environmental Satellite System Preparatory Project 
(NPP) VIIRS observations as proxy, JPSS VIIRS ADP product algorithm has been tested for different 
scenarios such as wild fires, dust storms, and dust transport from Africa. Comparisons with RGB 
images, AERONET observations and other satellite products such as CALIPSO have been performed. In 
general, the requirement, i.e., 80% correct detection for dust over water and land, for smoke over land, 
and 70% correct detection for smoke over water, can be achieved.  
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1 INTRODUCTION 
 
Aerosols perturb the Earth’s energy budget by scattering and absorbing radiation and by altering cloud 
properties and lifetimes. They also exert large influences on weather, air quality, hydrological cycles, 
and ecosystems. Aerosols released into the atmosphere due to natural and anthropogenic activities lead 
to deteriorated air quality and affect Earth’s climate. It is important to regularly monitor the global 
aerosol distributions and study how they are changing, especially for those aerosols with large spatial 
and temporal variability, such as smoke, sand storms, and dust [IPCC, 2007]. Detection of these highly 
variable aerosols is challenging because of strong interactions with local surface and meteorological 
conditions. 
 
Because atmospheric aerosols can directly alter solar and Earth radiation in both visible and infrared 
(IR) spectral regions through scattering and absorption processes, both visible, including deep-blue, and 
IR remote sensing techniques have been used for detection of aerosols in the atmosphere [e.g., Tanre 
and Legrand, 1991; Ackerman 1989, 1997; Kaufman et al., 1997; Verge-Depre et al., 2006; Ciren and 
Kondragunta, 2014]. Visible and IR images can be used for detecting episodic smoke and dust particles 
due to the fact that these aerosol particles display their distinctive spectral variations in the visible and 
IR spectral regions different from those of cloud or clear-sky conditions. In practice, the detection is 
based on the analysis of reflectance (or radiance) in visible bands or brightness temperature (BT) in IR 
bands. The magnitude of the difference in reflectance or BTs in selected bands (or channels) can be used 
to infer the signature of dust and smoke. This is the basic idea of our aerosol detection algorithm, which 
will be described in detail in this document. 

1.1 Purpose of This Document 
The aerosol detection Algorithm Theoretical Basis Document (ATBD) provides a high level description 
of and the physical basis for the detection of smoke/dust contaminated pixels with images taken by the 
VIIRS flown on the JPSS series of next generation NOAA operational polar meteorological satellites.  
The algorithm provides an initial estimate of the presence or absence of smoke or dust within each 
VIIRS pixel.   

1.2 Who Should Use This Document 
The intended users of this document are those interested in understanding the physical basis of the 
algorithms and how to use the output of this algorithm to optimize the episodic aerosol detection for a 
particular application.  This document also provides information useful to anyone maintaining or 
modifying the original algorithm.   

1.3 Inside Each Section 
This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details on VIIRS instrument characteristics and detailed 
description of the products generated by the algorithm. 

 
• Algorithm Description: Provides the detailed description of the algorithm including physical 

basis, the required input and the derived output. Examples from algorithm processing using 
proxy input data are also provided. 
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• Test Data Sets and Outputs: Provides a description of the test data sets used to characterize the 

performance of the algorithm and the quality of the output. Precision and accuracy of the end 
product is estimated and Error budget is calculated. 

 
• Practical Considerations: Provides an overview of the issues involving numerical computation, 

programming and procedures, quality assessment and diagnostics and exception handling.  
 
• Assumptions and Limitations: Provides an overview of assumptions which the algorithm is 

based on and the current limitations of the approach. The plan for overcoming some limitations 
with further algorithm development is also given. 

1.4 Related Documents 
 
Besides the references given throughout, this document is related to documents listed as bellow:   
 

(1) JPSS Suspended Matter product Algorithm Theoretical Basis Document (ATBD) 
(2) JPSS Program Level 1 Requirements Document (L1RD) 
(3) JPSS Program Level 1 Requirements Document SUPPLEMENT (L1RDS) 
(4) JPSS VIIRS Aerosol Detection Product Validation Plan Document 

 

1.5 Revision History 
This is the second version (Version 1.1) of this document.  All the documents were created by the JPSS 
Risk Reduction ADP product team led by Dr. Shobha Kondragunta of NOAA/NESDIS/STAR. The 
ADP product team includes Dr. Pubu Ciren of IMSG, Inc., Maryland. Version 1.1 ATBD accompanies 
the delivery of the version 1.1 algorithm to the JPSS Risk Reduction Algorithm Integration Team (AIT).  
Version 1.1 is an update on Version 1.0 to include the detailed description on the Enterprise System of 
the JPSS Risk Reduction algorithm as described in Version 1.0 and also some corrections.  

2 OBSERVING SYSTEM OVERVIEW 
This section will describe the products generated by the JPSS ADP product algorithm including smoke 
and dust and the requirements it places on the sensor.  

2.1 Products Generated 
 
As described in Table 1 ADP product measurement accuracy is defined as 80% of correct classification 
for dust over water and land, for smoke over land, and 70% correct classification for smoke over water 
with measurement range given as binary yes/no detection above threshold of 0.2 aerosol optical depth, 
as stated in JPSS Program Level 1 Requirements Document (L1RD) and JPSS Program Level 1 
Requirements SUPPLEMENT (L1RDS). It should be noted that aerosol optical depth of 0.2 defines 
background atmospheric aerosol and is not computed within this algorithm.    
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Table 1. JPSS mission requirements for Suspended Matter product 

 
EDR Attribute Threshold Objective 
   
SM Applicable Conditions: 

1. SM includes dust, 
volcanic ash, and 
smoke at any altitude. 

2. Clear, for AOT greater 
than 0.2 daytime only. 

 

  

a. Horizontal Cell Size 3 km 1 km 
b. Vertical Cell Size Total Column 0.2 km 
c. Mapping Uncertainty, 

3 Sigma 
3 km 0.1 km 

d. Measurement Range   
1. Detect suspended 

matter (dust, smoke, 
volcanic ash) (1)(2) 

Type: dust, volcanic ash, 
smoke 

Dust, ash, smoke, sea salt 

2. Radioactive/smoke 
plumes 

0 to 150 µg/m3 (smoke)  0 to 200 µg/m3 (smoke) 

e. Probability of Correct 
Typing 

  

1. Suspended Matter 80% 100% 
2. Dust 80% 100% 
3. Smoke 70% 100% 
4. Volcanic Ash 60% 100% 
5. Mixed Aerosol (2)  80% 

   
f. Refresh At least 90% coverage 

(product retrieval is attempted 
regardless of sky condition) of 
the globe over 24 hours 
(monthly average) 

3 hrs 

   
   
Notes: 

1. The dust and volcanic ash categories were combined at the request of M. Pavalonis and 
supported by J. Gleason and H. Kilcoyne.  The current algorithm cannot distinguish 
between dust and volcanic ash and the intent of the EDR was to say that there was 
“something” in the atmosphere. The dust and volcanic ash are separated into two 
categories in this revision.  Although some dust may be falsely identified as ash by the 
volcanic ash algorithm, the suspended matter algorithm will identify dust explicitly.   

2. DOC has a responsibility for analyzing areas of volcanic ash, blowing dust, and smoke. 
There is therefore a requirement that the suspended matter algorithm identifies instances 
of multiple types of suspended matter at the same location and not merely provides a 
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single suspended matter type with the highest concentration or probability. 
 
 
 
This requirement table is currently being modified to map the products between GOES-R VIIRS and 
JPSS VIIRS for the Enterprise algorithm approach.  Volcanic ash product will be moved to a separate 
table in the JPSS requirement document and also the smoke concentration will be changed to column 
smoke concentration in units of µg/m2.  When the revised table is approved, it will be updated in this 
document.   
 
 
The purpose of the ADP product algorithm is to identify VIIRS pixels which are contaminated by either 
smoke or dust during daytime to facilitate the monitoring of occurrences and development of smoke/dust 
episodes. However, due to the relatively weak contribution of aerosols compared to reflection from the 
surface to the satellite measured reflectances/brightness temperatures, the ADP product algorithm 
performs better for heavy smoke /dust episodes (with aerosol optical depth >0.2) over dark surface than 
over bright surfaces. Smoke detection over semi-arid and arid regions is less accurate due to lower 
contrast with the background. The algorithm output is currently written in netCDF4 format for Volcanic 
Ash flag (1/0 for yes/no, passed down from VCM product), dust flag (1/0 for yes/no), smoke flag (1/0 
for yes/no), cloud flag (1/0 for yes/no), none/unknown/clear flag (1/0 for yes/no), and snow/ice flag (1/0 
for yes/no) (see Table 2) and 4 quality flags (contained in a 1 byte integer), i.e., smoke detection quality 
flag (10/01/11 for low/medium/high quality), Dust detection quality flag (10/01/11 for low/medium/high 
quality), volcanic ash quality flag (10/01/11 for lower/medium/high quality) and none/unknown/clear 
quality flag (10/01/11 for low/medium/high confidence). In addition, product quality information flags 
(contained in a 4 byte integer) are also generated but only as internal output. The details on both quality 
flags and product quality information flags are given in Table 3 and Table 4 respectively. And, details 
on determination of quality flags are given in section 3.4.2.2.3., section 3.4.2.3.3., section 3.4.2.4.3. and 
section 3.4.2.5.3.. In addition, scaled smoke/dust aerosol index, which is related to the intensity of 
smoke/dust event, non-dust aerosol index and smoke concentration in a unit of µg/m3 are also provided 
in the output and are given in Table 5.  

2.2 Instrument Characteristics  
The ADP product will be produced for each pixel observed by the VIIRS. Table 6 summarizes the 
channels used by the current ADP product algorithm. Note that, the ADP algorithm is designed as 
Enterprise System, which means the ADP algorithm is able to handle multi-spectral observations from 
sensors which cover wavelength range from deep-blue to IR, such as VIIRS and MODIS, or from 
Visible to IR, such as AHI and ABI. In the following sections, VIIRS will be mainly used as an 
example. However, the mapping of channels or bands from different sensors to the channels used in 
enterprise system algorithm is given in Table 7.     
 
The backbone of the ADP product algorithm is the distinctive spectral and spatial signature of aerosol 
(smoke/dust). Like any other threshold-based algorithm, the ADP product algorithm requires optimal 
performance of the instrument. First, the ADP product algorithm is designed to work when only a sub-
set of the expected channels are available. Missing channels, especially the crucial ones, will impact 
directly the performance of the algorithm. Second, the ADP product algorithm is sensitive to instrument 
noise and calibration error. Thresholds are required to be adjusted accordingly to the status of instrument 
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operation and performance. Third, calibrated observations are also critical, but since the algorithm does 
not compare the observed values to those from a forward radiative transfer model, uncertainties in 
calibration can be ameliorated by modifying thresholds post launch of the JPSS VIIRS.  The channel 
specifications for VIIRA are given in the MRD.  
 
                            Table 2. Output flags for JPSS ADP product 

 
Type/Byte Flag Name 

Meaning 
Value:   0 (default) 1 

Integer 

1 Volcanic Ash No yes 

2 Cloud No yes 

3 Dust No yes 

4 Smoke No yes 

5 None/Unknown/Clear No yes 

6 Snow/ice No yes 

                   
 
 
 
 

Table 3. Quality flags for JPSS ADP product 

 
Byte/Bit* Quality Flag Name 

Meaning 
2bit: 10 (default:00) 01 11 

1 

0-1 QC_ASH_DETECTION Low Medium High 

2-3 QC_SMOKE_DETECTION Low Medium High 

4-5 QC_DUST_CONFIDENCE Low Medium High 

6-7 QC_NUC_CONFIDENCE Low Medium High 

      *Start from the least significant bit 
 

 
 

Table 4. Product quality information flags for JPSS ADP product 
 

Byte/Bit
* Diagnostic Flag Name 

Meaning 
1bit:   0 (default) 1  
2bit: 00 (default) 01 11 

2 

0 QC_INPUT_LON 
valid longitude 

 

Invalid longitude 

180<longitude or longitude <-180 
 

1 QC_INPUT_LAT 
valid latitude 

 

Invalid latitude 

90<latitude or latitude <-90 
 

2-3 QC_INPUT_SOLZEN 
Valid solar zenith angle (SZA) 

0≤SZA≤90 

invalid solar zenith angle(SZA) 

90<SZA or SZA <0 

90≥Solar 
zenith angle 

>60 

4-5 QC_INPUT_SATZEN 
Valid local zenith angle(VZA) 

0≤VZA≤90 

invalid local zenith angle(VZA) 

90<VZA or VZA <0 

90≥Local 
zenith angle 

>60 
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6-7 QC_INPUT_SNOW/ICE_SOURCE Snow/ice Mask from VIIRS 
retrieval Snow/ice Mask from IMS 

Snow/ice 
Mask from 
Internal test 

 

 

 

 

3 

8 QC_INPUT_SUNGLINT_SOURCE 
VIIRS sun glint Mask 

(from Cloud Mask product) 
Internal sun glint Mask  

9 QC_INPUT_SUNGLINT outside of sun glint within sun glint  

10 QC_INPUT_LAND/WATER Water Land  

11 QC_INPUT_DAY/NIGHT Day Night  

12 QC_WATER_SMOKE_INPUT Valid VIIRS inputs invalid VIIRS inputs  

13 QC_WATER_SMOKE_CLOUD Cloud-free Obscured by clouds  

14 QC_WATER_SMOKE_SNOW/ICE Snow/ice free With snow/ice  

15 QC_WATER_SMOKE_TYPE Thin Smoke Thick Smoke  

4 

16 QC_WATER_DUST_INPUT Valid VIIRS inputs Invalid VIIRS inputs  

17 QC_WATER_DUST_CLOUD Cloud-free Obscured by clouds  

18 QC_WATER_DUST_SNOW/ICE Snow/ice free With snow/ice  

19 QC_WATER_DUST_TYPE Thin dust Thick dust  

20 QC_LAND_SMOKE_INPUT Invalid VIIRS inputs Valid VIIRS inputs  

21 QC_LAND_SMOKE_CLOUD Cloud-free Obscured by clouds  

22 QC_LAND_SMOKE_SNOW/ICE Snow/ice free With snow/ice  

23 QC_LAND_SMOKE_TYPE fire Thick smoke  

5 

24 QC_LAND_DUST_INPUT Valid VIIRS inputs Invalid VIIRS inputs  

25 QC_LAND_DUST_CLOUD Cloud-free Obscured by clouds  

26 QC_LAND_DUST_SNOW/ICE Snow/ice free With snow/ice  

27 QC_LAND_DUST_TYPE Thin dust Thick dust  

28-
29 Smoke_Detection_Algorithm_Path Deep-blue based algorithm IR-Visible based algorithm Both 

30-
31 Dust_Detection_Algorithm_Path Deep-blue based algorithm IR-Visible based algorithm Both 

*Start from the least significant bit 
 
 
 

Table 5. Outputs from JPSS ADP product 

Bytes Type Name Meaning 
 

4 Float 32 Smoke/Dust aerosol index 
Index scaled by the corresponding 

threshold to illustrate the intensity of 
smoke/dust event 

4 Float 32 Dust Smoke Discrimination Index an index used to separate smoke from 
dust 

4 Float32 Smoke concentration in a unit of µg/m3 to describe mass 
concentration from smoke 
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Table 6. Channel numbers and wavelengths for the VIIRS. Channels used in the ADP product algorithm are 
highlighted in different colors. Key channels are identified by a check mark. 

 
Band Name 

Nominal 
Wavelength 
Range (μm) 

Nominal Central 
Wavelength (μm) 

Horizontal Sample Interval (Km) 
(Along-Track×Along-Scan) Sample Use 

Nadir End of Scan 

M1 0.402-0.422 0.412 0.742×0.259 1.60×1.58 Dust/Smoke 

M2 0.436-0.454 0.445 0.742×0.259 1.60×1.58 Dust/smoke 

M3 0.478-0.498 0.488 0.742×0.259 1.60×1.58 Dust/Smoke 

M4 0.545-0.565 0.555 0.742×0.259 1.60×1.58 Smoke 

M5 0.662-0.682 0.640 0.742×0.259 1.60×1.58 Dust/Smoke 

M6 0.739 – 0.754 0.746 0.742×0.776 1.60×1.58 Smoke 

M7 0.846-0.885 0.865 0.742×0.259 1.60×1.58 Dust/Smoke 

M8 1.230-1.250 1.24 0.742×0.776 1.60×1.58 Dust/Smoke 

M9 1.371-1.386 1.378 0.742×0.776 1.60×1.58 Dust 

M10 1.580-1.640 1.61 0.742×0.776 1.60×1.58 Smoke 

M11 2.225-2.275 2.25 0.742×0.776 1.60×1.58 Dust/Smoke 

M12 3.660-3.840 3.70 0.742×0.776 1.60×1.58 Dust/Smoke 

M13 3.973-4.128 4.05 0.742×0.259 1.60×1.58 Smoke 

M14 8.400-8.700 8.55 0.742×0.776 1.60×1.58  

M15 10.263-11.263 10.763 0.742×0.776 1.60×1.58 Dust/Smoke 

M16 11.538-12.488 12.013 0.742×0.776 1.60×1.58 Dust 

 

 
 
 
 
 
 

Input for both 
Dust and smoke Input for smoke Input for dust 



 17 

Table 7 Mapping of channels for different sensors to channels used in ADP Enterprise System algorithm 

Channel  
In EPS 

Sensors 

VIIRS MODIS ABI AHI 

1 0.412µm M1 Band 8 X X 

2 0.445 µm M2 Band 9 X X 

3 0.488 µm M3 Band 3 Band 1 Band1 

4 0.555 µm M4 Band 4 X x 

5 0.640 µm M5 Band 1 Band 2 Band3 

6 0.746 µm M6 Band 15 X X 

7 0.865 µm M7 Band 2 Band 3 Band 4 

8 1.24 µm M8 Band 5 X   X  

9 1.38 µm M9 Band 26 Band 4 X (Band 5)* 

10 1.61 µm M10 Band 6 Band 5 Band 5 

11 2.25 µm M11 Band 7 Band 6 Band 6 

12 3.70 µm M12 Band 20 X(Band 7)* X(Band 7)* 

13 4.05 µm M13 Band 21 Band 7 Band  7 

15 10.7 µm M15 Band 31 Band 14 Band 14 

15 12.01 µm M16 Band 32 Band 15 Band 15 

Green: used by both deep-blue based and IR-visible based detection algorithms 
Blue:  only used by deep-blue based detection algorithm 
Brown: only used by IR-Visible based detection algorithm. 
*:  band is missing but using the corresponding band in the parentheses instead. 
X: channel is missing, but not needed, and filled with “-999.9”  
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3 ALGORITHM DESCRIPTION 

3.1 Algorithm Overview 
The ADP product serves to aid air quality forecasters in identifying smoke and dust laden atmosphere.  
The ADP product algorithm follows heritage algorithms:    
 

• Non-cloud obstruction (including smoke and dust) detection in the MOD/MYD35 MODIS cloud 
mask developed for MODIS by the University of Wisconsin (UW). 

• Operational dust detection from MODIS developed for NWS and run by NESDIS/OSOPO.    
 

The fundamental outputs of the ADP product consist of 10 flags. They are 6 type flags, respectively for 
the presence of volcanic ash, smoke, dust, none/unknown/clear, clouds and snow/ice, and 4 quality flags, 
respectively for volcanic ash flag, smoke flag, dust flag and none/unknown/clear flag. Type flag has a 
value of 0 for the presence and 1 for the absence. As an example, in the smoke/dust flag, 1 represents 
smoke/dust and 0 represents no smoke/dust, respectively.  The details on quality flags are given in 
section 2.1. The following sections describe the JPSS VIIRS ADP product algorithm.

3.2 Processing Outline 
The processing outline of the ADP product algorithm is summarized in Figure 1, which includes the 
basic modules as input, output, and detection over land and water. The algorithm is written in C++, and 
products are outputted in netCDF4 format. For optimizing CPU usage, the ADP product algorithm is 
designed to run on segments of data. Each segment is comprised of multiple scan lines (12 lines). This 
Enterprise algorithm is able to run through three paths, they are IR-visible based detection algorithm, 
defined as path 1, deep-blue based detection algorithm, defined as path 2, and combined IR-Visible 
based and deep-based detection algorithms, defined as Path 3. The algorithm path is supplied or 
determined by spectral coverage of the input data. The algorithm path taken to generate the product is 
outputted in the product quality information flags (see Table 4, byte 5), respectively for the detected 
smoke and dust. 
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Figure 1: High level flowchart of the ADP product algorithm, illustrating the main processing sections. 

 

3.3 Algorithm Input 
This section describes the input needed to process the ADP product algorithm. While the ADP product 
is derived for each pixel, it does require knowledge of the surrounding pixels. In its current operation, 
we run the ADP product algorithm on segments of 12 scan-lines.   

3.3.1 Primary Sensor Data 
Calibrated/Navigated VIIRS reflectances and brightness temperatures on selected channels, geolocation 
(latitude/longitude) information, and VIIRS sensor quality flags are used as the sensor input data for the 
algorithm. Table 8 contains the primary sensor data used by the ADP product algorithm. Note that, the 
cloud mask required in ADP product algorithm is designed to primarily come from JPSS VIIRS cloud 
product. Channels used to determine the cloud mask are not listed here as that information is part of the 
VIIRS cloud mask ATBD.   
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Table 8  ADP product primary sensor input data. 

Name Type Description Dimension 
M1 reflectance input Calibrated VIIRS level 1b reflectance at M 1 grid (xsize, ysize) 
M2 reflectance input Calibrated VIIRS level 1b reflectance at M 2 grid (xsize, ysize) 
M3 reflectance input Calibrated VIIRS level 1b reflectance at M 3 grid (xsize, ysize) 
M4 reflectance input Calibrated VIIRS level 1b reflectance at M 4 grid (xsize, ysize) 
M5 reflectance input Calibrated VIIRS level 1b reflectance at M 5 grid (xsize, ysize) 
M6 reflectance input Calibrated VIIRS level 1b reflectance at M 6 grid (xsize, ysize) 
M7 reflectance input Calibrated VIIRS level 1b reflectance at M 7 grid (xsize, ysize) 
M8 reflectance input Calibrated VIIRS level 1b reflectance at M 8 grid (xsize, ysize) 
M9 reflectance input Calibrated VIIRS level 1b reflectance at M 9 grid (xsize, ysize) 
M10 reflectance input Calibrated VIIRS level 1b reflectance at M 10 grid (xsize, ysize) 
M11 reflectance input Calibrated VIIRS level 1b reflectance at M 11 grid (xsize, ysize) 
M12 brightness 
temperature 

input Calibrated VIIRS level 1b brightness temperature at 
M12 

grid (xsize, ysize) 

M 13 brightness 
temperature 

input Calibrated VIIRS level 1b brightness temperature at 
M13 

grid (xsize, ysize) 

M15 brightness 
temperature 

input Calibrated VIIRS level 1b brightness temperature at 
M15 

grid (xsize, ysize) 

M16 brightness 
temperature 

input Calibrated VIIRS level 1b brightness temperature at 
M16 

grid (xsize, ysize) 

Solar zenith angle input Pixel solar zenith angle grid (xsize, ysize) 
Solar azimuth 
angle 

input Pixel solar azimuth angle grid (xsize, ysize) 

Satellite zenith 
angle 

input Pixel satellite zenith angle grid (xsize, ysize) 

Satellite azimuth 
angle 

input Pixel satellite azimuth angle grid (xsize, ysize) 

Latitude input Pixel latitude grid (xsize, ysize) 
Longitude input Pixel longitude grid (xsize, ysize) 
QC flags input VIIRS quality control flags with level 1b data grid (xsize, ysize) 

 

3.3.2 VIIRS Product Precedence and Ancillary Data 
 

The dynamic data are from both VIIRS Level-1b and Level-2 products that needed by the ADP product 
algorithm and are listed in Table 9. They include cloud mask from VIIRS cloud product, snow/ice mask 
from VIIRS level-2 product. Sunglint mask and day/night flag are determined internally in the ADP 
product algorithm from viewing and illuminating geometry information. 

 
• Snow/Ice mask 

Primary source of snow/ice is VIIRS Level-2 Snow/Ice Product. However, under the situation that the 
primary source is missing, Interactive Multisensor Snow and Ice Mapping System (IMS) 
(http://nsidc.org/data/g02156.html) snow/ice mask will be the secondary source.  In addition, the ADP 
product algorithm has internal snow/ice test over land, whose function is to eliminate the residuals from 
external snow/ice mask over land. It is applied after the primary/secondary snow/ice mask.  Details on 
the internal snow/ice mask are given in section 3.4.2.1. 

• Cloud mask 

http://nsidc.org/data/g02156.html
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The purpose of using cloud mask in the ADP product algorithm is to eliminate pixels with obvious 
clouds, such as high and ice cloud, before performing smoke/dust detection. Hence, the requirement of 
ADP product algorithm for cloud mask is more specific than just cloud or clear mask. Stringent cloud 
mask has the potential to classify smoke/ dust as cloud, while loose cloud mask increases the chance of 
misidentifying clouds as smoke/dust. The ADP product algorithm intends to use only individual tests in 
JPSS VIIRS cloud mask product which indicate the existence of high cloud, ice cloud and thin cirrus 
cloud. In addition, some tests in cloud mask product, such as cloud shadow and fire hot spot, are used as 
quality control for the detected smoke/dust in ADP product. And, flag for volcanic ash from JPSS L-2 
Volcanic ash product is used to set volcanic ash flag in ADP product output. Currently, the ADP product 
algorithm is using Suomi NPP VIIRS data as proxy, including NPP VIIRS Cloud Mask (VCM).  Based 
on the definition of individual tests from VCM, the individual tests used in JPSS ADP product algorithm 
are given in Table 10. Table 11 gives mapping of JPSS ADP cloud test to individual tests in other cloud 
mask products, such as JPSS VIIRS cloud mask (i.e., Bayesian cloud mask) and MODIS cloud mask.   

 
Table 9  JPSS VIIRS Product Precedence and Ancillary input data. 

 Name Type Source Dimension 

VIIRS 
Product 

Precedence 
Data 

Cloud mask input JPSS VIIRS level 2 cloud product grid (xsize, ysize) 
Snow/Ice 

mask input JPSS VIIRS level 2 Snow/Ice Product grid(xsize, ysize) 

Volcanic ash input JPSS VIIRS level 2 Volcanic ash Product grid(xsize, ysize) 
Sun glint 

mask input Internally determined but needs information on 
viewing geometry grid(xsize, ysize) 

Day/night 
flag input Internally determined but needs information on 

viewing geometry grid(xsize, ysize) 

Ancillary 
Data 

Land/Water 
mask Input 1 km dataset 

http://glcf.umiacs.umd.edu/data/landcover 
grid(xsize,ysize) 

 
 

• Sun glint mask 
The ADP product algorithm is designed to generate internal sun glint mask based on VIIRS viewing and 
illuminating angles. The sun glint angle (η) is calculated as follows 
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Note that, φ is defined as the difference between solar azimuth angle and satellite azimuth angle.  An 
area with calculated sun glint angle greater than zero and less than 40o is defined as sun glint area. 
 

• Day/night mask 
A day/night flag is determined internally based upon the solar zenith angle. Day is defined as solar 
zenith angle of less than or equal to 87o, while night is defined as solar zenith angle greater than 87o. 
 

• Land/water mask 

http://glcf.umiacs.umd.edu/data/landcover
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The only static input data required by the ADP product algorithm is a global 1km land/water mask. The 
global land cover classification collection created by The University of Maryland Department of 
Geography with Imageries from the AVHRR satellites acquired between 1981 and 1994 [Hansen et al., 
1998] is the source (http://glcf.umiacs.umd.edu/data/landcover/). 
 

Table 10 JPSS VIIRS ADP product cloud mask tests to NPP VIIRS cloud mask (VCM)tests 

 
Cloud tests in 
ENTERPRISE 

algorithm 
No. 

VCM tests 
Byte No. (Bit No.)* Description Locations where the tests are 

used in ADP product 

pCirrus1 5( 3 ) Thin Cirrus Flag 

Smoke over Water 
Dust over water 
Smoke over land 
Dust over land 

 

pCirrus2 1 (7) 
Cirrus Detection (IR) 

(BTM15-BTM16) 
 

Smoke over Water 
Dust over water 
Smoke over land 
Dust over land 

pCirrus3 1 (6) Cirrus Detection (Solar) 
(RM9) 

Smoke over Water 
Dust over water 
Smoke over land 
Dust over land 

 

pFlag1 2 (2) 

IR Temperature Difference 
Test 

(BTM14 - BTM15) &(BTM15 - 
BTM16) 

 

Smoke over water 
Smoke over land 

pFlag2 2 (1) 
High Cloud Test 
(BTM12 - BTM16) 

 
Smoke over land 

pShadow 1(3) Shadow Detected 
Smoke over Water 

Dust over water 
Smoke over land 
Dust over land 

pFire 2(5) Fire Detected Smoke over land 
Dust over land 

*Both byte and bit starting from 0 
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Table 11 Mapping of ADP cloud tests with different cloud mask product 

 

Cloud tests in 
ENTERPRISE 

algorithm 
 

MODIS 
CLOUD 
MASK 

Byte No. (Bit 
no.) 

Suomi NPP VIIRS 
Cloud mask (VCM) tests  

JPSS VIIRS 
BAYESIAN 

CLOUD_MASK 
tests 

Byte  No. (Bit No.) 

Description of Bayesian Cloud Mask 
tests 

Locations where the 
tests are used in ADP 

pCirrus1 
2(0) 

(High cloud 
1.38um) 

pVCM_Cirrus1 
Cirrus Detection 

(Byte 1, bit 6) 
7 (5-6) CIRREF- Near IR Cirrus Test (1.38 µm) 

value=3 (confident cloudy) 
Smoke over land 
Dust over land 

pCirrus2 
1(7) 

(High cloud  
6.7um test) 

pVCM_Cirrus2 
Cirrus Detection 

(Byte 1, bit 7) 
7 (5-6) 

CIRREF- Near IR Cirrus Test (1.38 µm) 
value=3 (confident cloudy) 

 

Smoke over Water 
Dust over water 
Smoke over land 
Dust over land 

pCirrus3 
1(1) 

(thin cirrus, 
solar test) 

 

pVCM_Cirrus3 
Cirrus Detection 

(Byte 5, bit 3) 

7(5-6 ) 
 
 

CIRREF- Near IR Cirrus Test (1.38 µm) 
value=3 (confident cloudy) 

 

Smoke over Water 
Smoke over  Land 

pFlag1 
2(2) 

(IR Temperature 
difference) 

pVCM_Flag1 
IR temperature difference test  

(BTM14 - BTM15) 
&(BTM15-BTM16) 

(Byte 2, bit 2) 

5 (3-4) &4(5-6) 

PFMFT – Positive FMFT (Split-Window 
BTD) Test 

and 
11um -8.5um test 

value=3 (confident cloudy) 

Smoke over land 

pFlag2 
2(3) 

(3.7um-11um 
test) 

pVCM_Flag2 
Temperature difference test  

(BTM15 - BTM12)  
(Byte 2, bit 3) 

 6(3-4) 11um -3.75um test 
value=3 (confident cloudy) Smoke over land 

pShadow 1(2) 
Shadow Test Shadow Detected 2(7) Shadow contaminated Flag 

Smoke over Water 
Dust over water 
Smoke over land 
Dust over land 

pFire N/A Fire Detected 2(8) Fire contaminated Flag Smoke over land 
Dust over land 
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3.4 Theoretical Description  
The ADP product algorithm attempts to separate cloudy and clear pixels from those with smoke or dust. 
The detection of smoke or dust relies on the distinctive signature of smoke or dust which is often 
expressed in terms of spectral variations of the observed brightness temperature or solar reflected 
energy. The spectral variation of the refractive index plays an important role in the success of these 
methods.  In addition, the scattering and absorption properties of an aerosol also depend on the particle 
size distribution and the particle shape.  Several aerosol remote sensing techniques have been 
developed using observations from the Advanced Very High Resolution Radiometer (AVHRR) [e.g. 
Barton et al., 1992]. Similar to the dust plumes, the volcanic ash plumes often generate negative 
brightness temperature differences between 11µm (BT11) and 12 µm (BT12).  Prata [1989] has 
demonstrated the detection of volcanic aerosols using two infrared channels, while Ackerman and 
Strabala [1994] applied observations at 8.6, 11 and 12µm from the Hyper Spectral Infrared Sound 
(HIRS) instrument to study the Mt. Pinatubo stratospheric aerosol. Recently, Ciren and Kondragunta 
[2014] developed a simple and fast technique to detect dust based on MODIS observations in the deep-
blue (412 nm), blue (440 nm) and shortwave-IR (2130 nm) bands. This technique utilizes the spectral 
dependence of dust absorption, surface reflectance, and differences in absorbing/scattering properties 
between small and large particles.  
 
Image based aerosol detection always involves assumptions of the radiometric characteristics of aerosol, 
clear and cloudy scenes. The surface conditions also influence the separation of aerosol pixels from 
those with clear-sky or cloud. The ADP product algorithm currently uses spectral and spatial tests to 
identify pixels with smoke or dust in the daytime. The algorithm also treats the detection differently for 
water and land. 

3.4.1 Physics of the Problem 
Techniques for the remote sensing of aerosols using solar and thermal measurements from satellites 
have been developed for several instruments, including AVHRR and MODIS. Fundamentally, these 
methods are based on the radiative signatures of aerosols. The problem of accurate detection and 
classification is compounded by the fact that the physical characteristics of aerosols (e.g. particle size 
distribution, concentration, chemical composition, location in the atmosphere) change as the aerosol 
layer develops and dissipates.  These physical changes are capable of affecting the radiative 
characteristics of the original aerosol and our capability to detect them from satellite observations.  In 
addition to being present at the source region, aerosols are transported by winds to other regions of the 
globe.  
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Figure 2: Real and imaginary part of dust, soot, water and ice as a function of wavelength.  Plots are based on data 
obtained from CRTM.  

 
 
 
Fundamentally, the radiative signatures of an aerosol layer are determined by the scattering and 
absorption properties of the aerosol within a layer in the atmosphere. These are:  

• Extinction coefficient, extσ  (which integrated over path length gives the optical thickness, τ ).  
This parameter characterizes the attenuation of radiation through an aerosol volume due to 
aerosol scattering (measured by scattering coefficient σsca) and absorption (measured by 
absorption coefficient σabs) so that σext= σsca+ σabs. 

• Single scattering albedo, extsca σσω = , which describes how much attenuation of radiation is 
due to scattering. It ranges between 1 for a non-absorbing medium and 0 for a medium that 
absorbs and does not scatter energy.  

• Phase function, ),( µµ ′P  which describes the direction of the scattered energy. Here µ and µ′ 
are the cosine of solar and local zenith angles, respectively. 

  
There are three important physical properties of a particle that are needed to determine the scattering and 
absorption properties listed above:  
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• The index of refraction ( ir mimm −=  ) of the particle: The index of refraction of the medium is 
also required, but for air it is 1.  Measurements of the index of refraction of a material are very 
difficult to make [Bohren and Huffman 1983].  The rm is an indication of the scattering 
properties while the im is an indication of the absorption characteristics of the material. The 
scattering and absorption properties of an aerosol also depend on the particle size distribution. 
The index of refraction of smoke and dust is different from ice or water (Figure 2), which 
suggests that multi-spectral techniques should be useful in separating the aerosol from clouds. In 
addition, im of dust exhibits a sharpest increase with the decreasing wavelength in deep blue 
region, indicating the spectral contrast between two neighboring wavelengths in this region is 
able to separate dust from others. 

• The shape of the particle:  Microscopic analysis reveals that aerosols are irregular in shape. 
Thus, the assumption of spherical particles is often not accurate but a reasonable approximation.  
Shape effects may be a particular problem in the vicinity of strong infrared absorption bands for 
small particles with a uniform size distribution [Bohren and Huffman, 1983]. As no satisfactory 
method of handling the radiative properties of irregular shaped particles has been developed for 
general application to remote sensing techniques, the sensitivity studies generally assume 
spherical shaped particles. 

• The size distribution of the particles, n(r):  In addition to defining the radiative properties, the 
n(r) also determines the aerosol mass concentration. Particle size distributions of aerosols are 
often expressed as a log-normal distribution.   

 
Because of these distinctive wavelength dependent aerosol properties, the spectral threshold based 
techniques are used to detect dust, smoke, volcanic ash work. Those techniques generally can be 
grouped as IR-based, IR/Visible based and UV/Deep-blue based, depending on the wavelength range of 
the utilized aerosol signatures. For aerosols with a small particle size, such as smoke and haze, their 
distinctive signatures are mainly in the short-wavelength, while for aerosols with a large particle size, 
such as dust and volcanic ashes, their distinctive signatures are in the IR wavelengths. 
 
As for dust, it exhibits distinct radiative signatures in the UV, visible and IR regions (Sokolik, 2002).   
Various satellite-based dust detection techniques have been developed by utilizing its signature either in 
the UV (Herman et.al, 1997), visible (Miller, 2003; Jankowiak and Tanre´, 1992; Martins et al., 2002; 
Kaufman et al., 1997), IR (Ackerman, 1997; Darmenov and Sokolik, 2005; Hansell et at., 2007) or a 
combination of visible and IR (Evan et al., 2006; Cho et al., 2013).  Strong absorption by dust and low 
surface reflectivity in the UV spectral region enables the detection of absorbing aerosol including dust in 
the atmosphere (Herman et al., 1997). In addition, unlike most other dust detection techniques which can 
only provide a simple binary mask, absorbing Aerosol Index (AI) is also associated with the intensity of 
dust, although quantifying the dust loading in terms of optical depth requires the knowledge of dust 
layer height ( Hsu et al., 1999; Torres et al., 2002). However, UV aerosol detection technique is limited 
by its inability to separate dust from other absorbing aerosol such as smoke. Dust absorption features in 
the visible region (a brownish color as seen by human eyes), is well utilized to detect dust using spectral 
and spatial variability tests (Miller, 2003, Darmenov and Sokolik, 2009; Zhao et al., 2010; Cho et al., 
2013).  However, clouds, other type of aerosols, and bright surfaces can become a major interference.  
A unique radiative signature of dust in the IR window region, i.e., a negative brightness temperature 
difference between 11 µm and 12 µm, is widely used to distinguish the effect of dust from that of clouds 
(Sokolik, 2002; Legrand et al., 2001; Bullard et.al, 2008). Some algorithms use 8.5 µm in addition to 10 
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µm and 11 µm to detect dust using tri-spectral differencing techniques (Hu et al, 2008; Ackerman, 1989; 
Ackerman, 1997, Ashpole et al., 2012).  However, as Darmenov and Sokolik (2005) indicated that the 
magnitude or even the sign of the brightness temperature difference depends on the composition of the 
dust, height of the dust layer and surface emissivity, and thus the ability of detecting dust can vary from 
location to location.  In addition, another complication with IR detection of dust is from the water 
vapor absorption in longwave IR, which significantly affects the detection over regions and/or seasons 
depending on atmospheric water vapor content (Ashpole et al., 2012). Besides utilizing the dust 
signature in brightness temperature difference between 11 µm and 12µm, Kluser and Schepanski (2009) 
further utilized the dust effect on diurnal cycle of brightness temperature in 11 µm to derive a Bi-
temporal Mineral Dust Index (BMDI) for Meteosat Second Generation (MSG) IR observations.  
However, it is only for over land, applicable only to geostationary satellite observations, and based on 
the assumption that diurnal variability of dust plume is small, which is not always true for transported 
dust. 
 
For dust and volcanic ashes, their bulk transmittances display a strong spectral variation in the 8-10 µm 
and 10-12 µm regions. This is also a spectral region over which the atmosphere is fairly transparent. For 
these reasons, techniques have been developed which successfully employ satellite radiance 
measurements at 11 and 12 µm to detect dust and volcanic ashes. These split window IR techniques 
have primarily been applied to volcanic aerosols, particularly those from sulfur-rich eruptions [e.g. Prata 
1989; Barton et al. 1992] as well as dust outbreaks [Legrand et al., 1992, 2001; Evan et al., 2006]. As 
demonstrated in Figure 3, dust absorbs more radiation at 12µm than 11µm, which causes the brightness 
temperature difference between the two to be negative.  
 
The positive BT11µm-BT12µm values are usually associated with clear sky atmospheres, since water vapor 
has both absorption and emission in the 11 and 12 µm channels, and the weighting function for the 
11µm channel peaks lower in the atmosphere than the 12µm channel does. However, with the presence 
of a dry air mass, often associated with dust events, will tend to reduce the positive BT11µm-BT12µm. In 
addition, as shown in Figure 2, dust has a larger absorption at 12µm than at 11µm, so that dust plumes 
generally have a higher emissivity and lower transmissivity in the 12 µm channel [Ackerman, 1997; 
Dunion and Velden, 2004]. For more elevated dust layers, the increased temperature separation between 
the dust layer and the surface, and coincident reduction of dry air closer to the peak of the 11µm 
weighting function makes the split window brightness temperature difference even more less positive. 
However, this difference has also been observed to be affected by the optical thickness of a given dust 
plume, so that in thick optical depths the BT11µm-BT12µm difference becomes more negative. 
 
Darmenov and Sokolik [2005] further explored the brightness temperature difference technique using 
MODIS data applied to dust outbreaks from different regions of the globe. In general, BT8µm-BT11µm 
becomes less negative and BT11µm-BT12µm becomes more negative with increasing dust loading (Figure 
3).  However, in the ADP algorithm, the 3.9 µm is chosen instead of 8 µm because 3.9 µm has lees 
water vapor absorption and also to eliminate the false alarm from low level clouds (often towering 
cumulus).  
In the short-wavelength region, dust absorbs at blue wavelengths and appears visually brown in color. 
Clouds are spectrally neutral and appear white to human eyes. For this reason, the reflectances at 0.86, 
0.47 and 0.64µm have been used to identify dust. This is often done in a ratio of one to another or as a 
normalized difference index. For example, the MODIS aerosol optical depth retrieval algorithm has a 
condition that ratio of reflectances between 0.47 µm and 0.64 µm should be less than 0.75 for the central 
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pixel in a 3 X 3 box to be identified as dust. Evan et al [2006] use a constraint that the reflectance value 
of the 0.86µm channel (R0.86µm) divided by the reflectance value of the 0.63µm channel (R0.63µm) is 
within the range of 0.6–1.0 for the AVHRR (this range is slightly different for MODIS due to 
differences in the spectral response functions). Again, due to the nonlinear relationship with optical 
thickness, we chose to square the reflectances prior to applying a test. The physical basis for this test is 
that the presence of smaller aerosols, like smoke, tends to reduce the values for this ratio, as smaller 
particles are more efficient at scattering light at 0.63µm. Although dust particles are observed to scatter 
more light at 0.63µm than at 0.86 µm probably due to their size, they tend to exhibit more uniform 
scattering across this spectral region [Dubovik et al., 2002]. A ratio type test of R0.86µm/ R0.63µm has been 
found to be useful in discriminating pixels containing smoke from those with dust 
Although dust particles are observed to scatter more light at 0.63µm than at 0.86µm probably due to 
their size, they tend to exhibit more uniform scattering across this spectral region [Dubovik et al., 2002]. 
Thus, the ratio R0.86µm/ R0.63µm test [Evan et al., 2006] has been found to be useful in discriminating 
pixels containing smoke from those with dust. Another test for dust examination over water is the 
requirement that the ratio of reflectance at 0.47 µm and 0.64 µm is smaller than 1.2.  Similar to the dust 
detection over land, low level clouds (often towering cumulus) can also have a negative split window 
brightness temperature difference. Therefore, brightness temperature between 3.9 µm and 11 µm can be 
used to screen out cloud contaminated pixels.   
 

 
Figure 3. Combined tri-spectral diagram of brightness temperature differences for ‘‘heavy dust’’ pixels, indicated by 
the number 1 to 7, and for clear sky. From Darmenov and Sokolik [2005]. 

 
 
 
The RGB image in Figure 4 shows a dust plume with different regions of heavy dust, thin dust, and clear 
sky clearly identified.  For these different regions, the relationship between different visible and IR 
BTD are plotted in the four panels of Figure 4. Clear sky pixels have low reflectance at both 0.47 and 
0.64 um, thin dust has elevated reflectances at these channels, and thick dust pixels have 20% or greater 
reflectance at these channels. The BTD between 3.9 um and 11 um plotted against the BTD between 11 
µm and 12 µm shows a clear separation of thick dust pixels compared to thin dust and clear-sky.   
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Figure 4: The relationship between various combinations of channels for heavy, thin dust, and clear conditions. 

Besides separating clouds from other type of aerosols, the challenge of detecting dust lies largely 
in separating it from a bright surface that is generally the source of airborne dust. In the deep-blue to 
blue wavelength region, reflectance from a bright surface is well below the critical surface reflectance: a 
quantity to define if signal from aerosol is distinguishable from the surface. A deep-blue aerosol optical 
depth algorithm developed by Hsu et al (2004) shows aerosol properties can successfully be retrieved 
even over a bright surface, when measurements at deep blue channels are used. In the deep blue aerosol 
retrieval algorithm, deep-blue Absorbing Aerosol Index (AAI) defined in a manner similar to the Total 
Ozone Mapping Spectrometer (TOMS) AI is used for cloud screening to separate aerosol from clouds 
but aerosol type is determined using the aerosol model selected in the aerosol optical thickness retrieval 
algorithm. Note that, like TOMS AI, the AAI described by Hsu et al (2004) cannot separate dust from 
other absorbing aerosols.  

The advantage of using measurements in the blue wavelength region (410 to 490 nm) to retrieve 
aerosol optical properties has been clearly demonstrated by Hsu et al. (2004, 2006). Due to the fact that 
the sensitivity of reflectance to the dust in the atmosphere decreases with the increasing wavelength, the 
spectral contrast between two neighboring wavelengths can be used as an indicator for the presence of 
dust. The spectral shape of the reflectance at the Top of the Atmosphere (TOA) for a cloud-free 
atmosphere is determined by three main processes: Rayleigh scattering, absorption and scattering by 
aerosols, and reflection by the underlying surface. The strong wavelength-dependent Rayleigh scattering 
creates a strong contrast between two neighboring wavelengths. The presence of dust, however, reduces 
this contrast as a result of the increased absorption with decreasing wavelength. As for the underlying 
surfaces, their effects on spectral contrast depend on the spectral variability of surface reflectance. For 
surface type such as water, the surface reflectance is nearly independent of wavelength within deep-blue 
to blue region except for areas with sunglint; therefore, its effect on the spectral contrast is minimal. 
However, arid or desert surfaces show an increased reflection with the increasing wavelength (Hsu et.al. 
2004), similar to absorbing aerosol; reflection from these surfaces will also reduce the spectral contrast. 

Clear 

thin dust  

Heavy dust  
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Figure 5: Ratio of the simulated TOA reflectance at MODIS band 8 (412 nm) and band 9 (440 nm) as a function of 
viewing zenith angle at a solar zenith angle of 10º (a),  30º (b)  and 50º (c). Solid lines represent a clear atmosphere 
bounded by ocean (blue), vegetation (green), and desert (orange). Dashed lines represent an atmosphere with dust 
(AOD at 550 nm is 1.0) bounded by ocean (blue), vegetation (green) and desert (orange). Red solid lines are sunglint 
angle over ocean. Relative azimuth angle of 120o is used. Total ozone amount is set at 350 DU. 

This is illustrated by simulating the spectral dependence of TOA in the blue wavelength region 
for different surface and atmospheric conditions with a thoroughly tested vector version of 6S radiative 
transfer code (Kotchenova et. al. 2006). Figure 5 shows the ratio between MODIS band 8 (412 nm) and 
band 9 (440 nm) TOA reflectance at three solar zenith angles (SZA) (i.e. 10º, 30º and 50º) for various 
scenarios: (a) an atmosphere with only Rayleigh scattering bounded by a black surface (surface 
reflectance of 0.0), (b) an atmosphere with Rayleigh scattering bounded by desert, vegetation and water, 
and (c) an atmosphere with Rayleigh scattering and dust bounded by desert, vegetation and water.  Note 
that, the sunglint angles are also shown to illustrate the sunglint region over ocean. 

In Figure 5, for different scenarios, dashed line and solid lines represent dust-free and dust with 
an aerosol optical depth (τ) of 1.0, respectively. A non-spherical dust, i.e., spheroid dust model, based on 
almucantur inversion of AERONET observations [Dubovik, 2006] is used in the simulations. The details 
of the microphysical/optical properties of the dust model were given by Remer et al. [2006]. Surface 
spectral reflectance of vegetation and sand embedded in 6S are used to represent vegetated and desert 
surface. Ocean Bi-directional Reflectance Distribution Function (BRDF) from 6S was selected to 
calculate the ocean surface reflectance for an easterly wind speed of 6 m/s.  It is seen that the contrast 
between reflectances at 412 nm and 440 nm become smaller when dust is present in the atmosphere for 
desert, vegetation and sunglint-free (with a sunglint angle>30º) ocean surface, compared to dust-free 
condition.   The reduction in contrast between the two wavelengths is most significant for sunglint-free 
ocean surface and relatively smaller for desert and vegetated surfaces because sunglint-free ocean 
surface has a relatively lower and flat spectral reflectance. For a clear atmosphere over ocean outside of 
sunglint region, TOA reflectance is dominated by the spectral signature of Rayleigh scattering. While 
desert and vegetated surfaces are brighter and have spectrally increasing reflectance that is opposite to 
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the spectral signature of Rayleigh scattering.  Therefore, the spectral variation of TOA reflectance is 
reduced for dust-free atmosphere over desert and vegetation. In addition, it is also seen that the decrease 
in spectral contrast is larger at both a larger viewing zenith angle (VZA) and a larger SZA, since the 
slant path increases with the increasing SZA and VZA. However, it is also seen that the spectral contrast 
decreases largely with the decreasing sunglint angle for ocean surface without dust, indicating that 
reflection from sunglint itself may reduce the spectral contrast as well. This has to be taken into account 
to avoid misidentifying sunglint as dust.  

The reduction in spectral contrast of Rayleigh scattering when dust is present in the atmosphere 
is also seen in satellite observations. Figure 6a-b shows the regions highlighted by boxes where pixels 
are identified as clear and as dusty, respectively for over land and ocean. Figure 6c-d shows the ratio of 
TOA reflectance at 412 nm and 440 nm as a function of TOA reflectance at 412 nm for pixels from the 
selected boxes over land and over ocean.  It is seen that the ratio of 412 nm to 440 nm for pixels with 
dust is distinct from clear pixels over ocean, showing the reduced contrast between 412 nm and 440 nm 
(see Figure 6d). Such separation is also seen for dust over desert (Figure 6c), although not as distinct as 
that for over ocean.   
 

 

a 

b 

c 

d 
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Figure 6: (a) RGB image of MODIS Aqua Granule on May 3, 2012, 1425 UTC; (b) RGB image of MODIS Aqua 
granule on June 23, 2012, 1320 UTC; Ratio of the observed TOA reflectance at MODIS band 8 (412 nm) and band 9 
(440 nm) as a function of the observed TOA reflectance at MODIS band 8 (412 nm) for pixels identified as clear (blue) 
and dust-laden (orange) over land (c) and over ocean (d). 

 
This analysis based on theory and observations suggests that the effect of dust in reducing the 

spectral contrast between 412 nm and 440 nm could be used as a way to detect the presence of dust in 
the atmosphere. However, using the spectral contrast under clear condition as a reference to detect dust 
requires the knowledge of spectral reflectance of underlying surface. To bypass this problem, the 
spectral contrast from a pure Rayleigh scattering is used as a reference, and different thresholds for the 
reduction in spectral contrast is chosen for over land and water. Therefore, an index similar to AI and 
absorbing aerosol index used in SeaWiFS (Hsu al, 2000), named as Absorbing Aerosol Index (AAI) 
shown in Equation 1 has been developed.  

 
𝐴𝐴𝐴𝐴𝐴𝐴 = −100[𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅412𝑛𝑛𝑛𝑛/𝑅𝑅440𝑛𝑛𝑛𝑛) − 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅′412𝑛𝑛𝑛𝑛/𝑅𝑅′440𝑛𝑛𝑛𝑛)]        (1) 
 

In Equation 1, R is the TOA reflectance, R´ is the reflectance from Rayleigh scattering as computed by 
6S code for a given location and satellite viewing geometry. To illustrate how AAI changes with the 
dust loading, 6S radiative transfer model simulations were used to calculate AAI for dust with different 
optical depths (at 550nm):  no dust (τ=0.0), weak (τ=0.5), heavy (τ=1.0) and extreme dust loading 
(τ=2.0).  Results are given in Figure 7a-c, showing the AAI as a function of viewing zenith angle, 
respectively for over desert, over ocean and over vegetation. Filled square, triangle, circle and diamond 
respectively represent different dust-loading indicated by dust aerosol optical depth at 550nm (τ) of 0.0, 
0.5, 1.0 and 2.0.  Dash-dotted, solid and dotted lines are for solar zenith angles of 10º, 30º and 50º 
respectively. The AAI values for heavy and extreme dust loadings are well separated from those of no 
dust for both desert and vegetation surface and especially for ocean surface outside sunglint region, 
indicating AAI is well suitable to detect heavy to extreme dust over both land and ocean. For over desert 
and vegetation, it is clearly seen that the separation increases with the increasing solar zenith angle and 
the increasing viewing zenith angle, suggesting AAI performs better for a larger solar and viewing 
zenith angle. And, the difference in AAI becomes smaller with the increasing dust loading. However, it 
should also be noted that the AAI threshold to detect dust has to be carefully chosen to minimize false 
alarms and maximize detection, especially for low aerosol loading at a lower solar and viewing zenith 
angle. Over ocean, it is seen that sunglint is a large factor to cause weak dust not detectable over 
sunglint region. As for over sunglint-free ocean, the separation between weak dust (represented by 
τ=0.5) and no dust (represented by τ=0.0) is much larger than those over land surface and is less 
sensitive to the changing solar and viewing zenith angles.  This finding suggests that detecting low to 
weak dust with AAI is much better over ocean than over land surface.  
 

However, as given in Figure 8a, other absorbing aerosol such as smoke also shows a similar 
effect on the spectral contrast between 412 nm and 440 nm as dust. Due to the fact that particle size of 
dust is considerably larger than smoke, therefore, dust extends its scattering signature even to shortwave 
IR wavelength, whereas smoke is mostly transparent (Kaufman et al, 2000). By introducing the 
observations at shortwave IR wavelength, it is possible to separate dust from other absorbing aerosols. 
As an example, Figure 8b shows a scatter plot between TOA reflectance at 412 nm and 2130 nm from 
MODIS for pixels identified as smoke, dust and clear over ocean. One can see that pixels with dust have 
higher reflectance at 2130 nm and are well separated from clear pixels and pixels with smoke. To this  
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Figure 7: AAI as a function of viewing zenith angle over desert (a), over ocean (b) and over vegetation (c), for aerosol 
optical depth at 550 nm (τ) of  0.0 (square), 0.5 (triangle), 1.0(circle) and 2.0(diamond).  Solar Zenith Angle (SZA) 
of 10º, 30º and 50º is represented by dash-dotted, solid and dotted lines, respectively. Note that relative azimuth is set 
at 120º.    
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Figure 8: Ratio of the observed TOA reflectance at: a) MODIS band 8 (412 nm) and band 9 (440 nm), b) MODIS 
band 8 (412 nm) and band 7 (2130 nm), as a function of the observed TOA reflectance at MODIS band 8 (412 nm) for 
pixels identified as clear (blue), smoke-laden (red) and dust-laden (orange) over ocean. 
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end, a second index, named as Dust Smoke Discrimination Index (DSDI) is computed using the formula 
shown in Equation 2. 

 
                 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = −10[𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅412𝑛𝑛𝑛𝑛/𝑅𝑅2130𝑛𝑛𝑛𝑛)]        (2)     
                                                           
In Equation 2, R is the observed TOA reflectance. The DSDI is applied to pixels which pass through the 
AAI threshold test. 
 
As shown in above section, by using the spectral contrast between deep-blue and blue wavelength,  
absorbing aerosols, including smoke and dust, can be detected, furthermore, with the spectral contrast 
between deep-blue and shortwave IR wavelength, dust can be separated from other, including smoke, 
indicating this technique can also be used for both smoke and dust detection.  
 

Besides the above-motioned deep-blue technique, signatures of smoke presence in other 
wavelengths are also used for smoke detection. For smoke detection overland, fire spots are first 
detected by looking at pixels with BTs at 4.05 µm greater than 350K and the BTD between 4.05 µm and 
10.76 µm greater than or equal to 10K. It is assumed that Pixels that pass fire test usually have thick 
smoke. Secondly, the smoke tests over land also take advantage of a linear relationship between the 
reflectance at visible band (0.67 µm for VIIRS) and shortwave IR band (2.25 µm for VIIRS). Figure 9 
shows this relationship with the correspond bands at VIIRS.  It is seen that surface reflectance at M5 is 
generally around 80 % of the surface reflectance at 2.25µm. However, due to the fact that the size of 
smoke particle is relatively small, the signal from smoke will be extremely small in the shortwave IR 
wavelength; therefore, there is a larger increase in R0.67µm than R2.25µm for an atmosphere with the 
presence of smoke. As for separating smoke from clouds, spatial uniformity tests for M5 (0.67 µm) band 
is used for over land, since clouds show large variability in this band compared to smoke, and also 
surface is darker.  

As for smoke detection over water, spatial variability tests will also help in avoiding the mis-
classification of clouds as smoke. Since clear pixels, pixels loaded with thick smoke and clouds are more 
uniform than pixels with partial cloud or thin dust, by using the standard deviation of reflectance at 0.86 
µm, where both aerosol and clouds effects are moderate, pixels which contain thick smoke vs. 
clouds/thin smoke can be separated. It is known that smoke in visible channels looks brighter than water 
surface but darker than a cloud. However, it is very difficult to completely separate them by only using 
the reflectance test. Therefore, based on the fact that reflection from clouds is spectrally independent, 
while reflection from smoke has strong wavelength dependence, spectral contrast tests are combined to 
separate clouds, smoke and water surface. First of all, the ratio between R0.47µm and R1.61µm is used, the 
rationale for choosing these two channels is due to the fact that aerosol effect is larger at 0.47µm but 
water is darker at 1.61µm. Secondly, the ratio between R2.25µm and R1.61µm is combined to enhance the 
separation of smoke from clouds. Thirdly, by constraining R0.47µm and R1.61µm, thick smoke can be 
identified. 
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Figure 9 : Surface reflectance at M5( 0.67µm) vs. surface reflectance at M11(2.25µm) from S-NPP VIIRS.   

 
As for illustration, scatterplots of the ratio of R0.47µm to R1.61µm and the ratio of R2.25µm to R1.61µm 

against R0.47µm and R1.61µm were shown, respectively for clear pixels, pixels loaded with thick smoke, thin 
smoke and cloudy pixels, in Figure 10.   
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Figure 10:  Scatter plots of the ratio of R0.47 to R1.61 vs. R0.47µm, the ratio of R0.47 to R1.61 vs. R1.61µm, the ratio of R2.25 to 
R1.61 vs. R0.47µm, the ratio of R2.25 to R1.61  vs. R1.61µm for clear-sky pixels (blue), thick smoke pixels (dark brown), thin 
smoke (light brown) and cloudy pixels (red).    

 

3.4.2 Mathematical Description 
Computation of binary flag for smoke/dust in the ADP product algorithm is a process of 

elimination and determination. It has three levels.  First, any pixel which contains cloud (ice, high and 
optically thick clouds) and snow/ice, determined from input cloud mask and snow/ice mask, is tagged as 
a cloudy and snow/ice pixel respectively and not processed. Second, pixels contaminated by clouds but 
not screened by cloud mask are further identified by a combination of spectral and spatial variability 
tests. Third, spectral contrast tests, such as AAI and DSDI (see equation 1 and 2), are used to determine 
if a pixel has smoke or dust. Due to the fact that the contrast of smoke/dust to underlying surface is 
different for land and water, computation of binary flag for smoke/dust in the ADP product is separated 
for land and water.  The following sections describe the various tests employed in the ADP product 
algorithm in detail. Besides the two indices given in equation (1) and (2), the symbols and formulae used 
in the various tests through the ADP product algorithm are defined as follows: 

 

𝑅𝑅1 =
𝑅𝑅𝑀𝑀3
𝑅𝑅𝑀𝑀5
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𝑅𝑅2 =
𝑅𝑅𝑀𝑀7
𝑅𝑅𝑀𝑀5

 

𝑅𝑅3 =
𝑅𝑅𝑀𝑀3
𝑅𝑅𝑀𝑀10

  

𝑅𝑅4 =
𝑅𝑅𝑀𝑀11
𝑅𝑅𝑀𝑀10

 

𝑅𝑅𝑅𝑅𝑅𝑅1 =
𝑅𝑅𝑀𝑀5 − 𝑅𝑅𝑀𝑀3
𝑅𝑅𝑀𝑀5 + 𝑅𝑅𝑀𝑀3

 

𝑅𝑅𝑅𝑅𝑅𝑅2 =
𝑅𝑅𝑅𝑅𝑅𝑅12

𝑅𝑅𝑀𝑀32
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑅𝑅𝑀𝑀7 − 𝑅𝑅𝑀𝑀5
𝑅𝑅𝑀𝑀7 + 𝑅𝑅𝑀𝑀5

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2

𝑅𝑅𝑀𝑀52
 

 
 
In the formulae listed above, “R” is reflectance,  “Rat” is for ratio, “NDVI” is Normalized Difference 
Vegetation Index, “MNDVI” is Modified Normalized Difference Vegetation Index. Additionally 
variables such as “BT” for Brightness Temperature, “BTD” for Brightness Temperature Difference, 
“StdR” for Standard Deviation of Reflectance computed spatially for 3 X 3 pixels.   

 
Calculation of StdR for pixel which is not on the edge of scan is from the surrounding 3 by 3 pixels. For 
pixels on the edge of scan, standard deviation for the closest pixel is assigned.   

 

3.4.2.1 Snow/ice test over land 
Before proceeding to any tests over land, it is important to identify pixels contaminated by snow/ice. As 
described earlier, VIIRS snow/ice product is the primary source, and if the primary source is 
unavailable, snow/ice mask from IMS is used as a second source. However, a further test is designed to 
catch any pixels that pass through but have snow/ice.  
 
The specific internal tests as currently implemented are: 

1) Good data test 
• RM7, RM8. > 0.0   & 
• BTM15 > 0.0K            & 
• VIIRS quality flags for above channels indicate good data 

 
2) Snow and Ice tests  
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The Internal snow ice test over land relies on brightness temperature at M15 (𝐵𝐵𝐵𝐵𝑀𝑀15) and 
Normalized Difference Snow Index (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is defined as: 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑅𝑅𝑀𝑀7−𝑅𝑅𝑀𝑀8)
(𝑅𝑅𝑀𝑀7+𝑅𝑅𝑀𝑀8) 

                                (3) 
 

The pixles is defined as snow/ice comtamined if 𝐵𝐵𝐵𝐵𝑀𝑀15 < 285𝐾𝐾 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 > 0.1.  And, ADP 
detetcion is not avoided but the detetced snow/ice is outputted in snow/ice flag for quality control 
purpose for this pixle.   
 

3.4.2.2 Dust Detection over Land  
Dust detection over land has two paths. If either path identifies the presence of dust, then dust is shown 
to be present in the product. The first path is the same algorithm as for GOES-R Advance Baseline 
Imager (ABI) to detect dust over land, which is based on the spectral variability tests at visible bands 
and negative brightness temperature difference between two wavelengths in IR regions; the second one 
is designed for VIIRS, by taking advantage of observations of VIIRS at deep-blue bands. The path is 
determined by the availability of channels, if no deep-blue channels, as M1 and M2 for VIIRS, are 
available, the algorithm only takes the first path. Otherwise, both paths are taken. 

3.4.2.2.1  IR and visible-based dust detection 
The IR and visible-based algorithm is adopted from the heritage of GOES-R ABI ADP algorithm. 
Figure 11 is a flow chart of the algorithm to detect the presence of dust over land during daytime 
(defined as solar zenith angle less than or equal to 87o degrees). The tests are not performed over snow 
and ice or in the presence of clouds. 
 
The specific tests as currently implemented are: 
 

(1) Test for the presence of snow/ice by using both primary snow/ice mask and internal snow/ice 
mask, which is given in section 3.4.2.1. Test for the presence of clouds relies on VIIRS cloud mask. 
Pixel is considered to be obscured by clouds if any of these five cloud mask tests in Table 10, i.e. 
pCiirus1, pCirrus2, pCirrus3, pFlag1 and pFalg2, is true. Any pixel with positive snow/ice/ or clouds 
is not processed.     

    
 

(2) Test for the quality of the input radiance data 
• RM3, RM5, RM7, RM9 > 0.0 & 
• BTM12, BTM15, BTM16 > 0.0K    & 
• VIIRS quality flags for above channels equal to zero, indicating quality of the data is 

assured.   
 

(3) Thin Dust detection: BTD and R tests – check for pixels with thin dust and no cirrus clouds 
For detection of thin dust, the following spectral contrast in the visible wavelength and 
brightness temperature difference are applied: 

 
BTM15 − BTM16  ≤  −0.2K 
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BTM12 − BTM15  ≥  15𝐾𝐾  
𝑅𝑅𝑀𝑀9 < 0.035  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 0.08  
𝑅𝑅𝑅𝑅𝑅𝑅2 > 0.005  

  
Here BTM12, BTM15 and BTM16 are brightness temperature at M12, M15 and M16, 
respectively. RM9 is the reflectance at M9. Rat2 and MNDVI are defined in section 3.4.2.    
If all tests shown above are passes, thin dust (1) is detected for the processed pixel. 
Or, if : 

BTM12 − BTM15  ≥  20𝐾𝐾  
thin dust (2) is also identified for the processed pixel 

 
(4) Thick dust detection 
        

For detection of thick dust, the following spectral contrast in the visible wavelength and 
brightness temperature difference are applied: 

 
BTM15 − BTM16  ≤  −0.2K 
BTM12 − BTM15  ≥  20𝐾𝐾  
𝑅𝑅𝑀𝑀9 < 0.035  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 0.2  

 
Here BTM12, BTM15 and BTM16 are brightness temperature at M12, M15 and M16, 
respectively. RM9 is the reflectance at M9. MNDVI is defined in section 3.4.2.    
If all tests shown above are passes, thick dust is detected for the processed pixel. 
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Figure 11: Detail Flow chart of IR-Visible based dust detection over land. 

3.4.2.2.2  Deep-blue based dust detection 
Figure 12 is a flow chart of the algorithm to detect the presence of dust over land during daytime 
(defined as solar zenith angle less than or equal to 87o degrees). The tests are not performed over snow 
and ice or in the presence of clouds. 
 
The specific tests as currently implemented are: 
 
(1) Test for the presence of snow/ice by using both primary snow/ice mask and internal snow/ice mask, 
which is given in section 3.4.2.1. Test for the presence of clouds relies on cirrus cloud tests in VIIRS 
cloud mask and reflectance at M1. Pixel is considered to be obscured by clouds if any of these three 
cloud tests in Table 10, i.e. pCiirus1, pCirrus2 and pCirrus3, is true, or RM1 ≥0.5. Any pixel with the 
presence of snow/ice or clouds is not processed.     
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(2) Test for the quality of the input radiance data 
• RM1, RM2, RM8, RM11 > 0.0 & 

 
• VIIRS quality flags for above channels equal to zero, indicating quality of the data is 

assured.   
 

(2) Bright surface test 
• RM8, RM11 > 0.0 & 

 
• VIIRS quality flags for above channels equal to zero, indicating quality of the data is 

assured.   
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
(𝑅𝑅𝑀𝑀8−𝑅𝑅𝑀𝑀11)
(𝑅𝑅𝑀𝑀8+𝑅𝑅𝑀𝑀11)                           (4) 

 
If Bridx<0.05 or RM11>0.25 then the pixel is considered as a bright pixel. 

 
(3) Dust detection: AAI and DSDI tests – check for pixels with dust  

 
If AAI >11.5 and DSDI≥0.0, dust exists for the pixel. Once dust is detected for the pixel, dust 
flag is set and the value of the Dust Aerosol Index (DAI), which is associated with the intensity 
of the dust, is obtained by scaling AAI as following: 

 
         DAI = AAI − 11.5                                         (5) 

 
(5) Residual cloud test 

 
Residual cloud contamination is determined by standard deviation of RM1 (StdR M1) in a 3 by 3 box 
centered with the processed pixel. If StdR M1≥0.01, residual cloud exists for the processed and it is 
assigned as cloudy. 
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Figure 12: Detail Flow chart of deep-blue based dust detection over land. 

3.4.2.2.3 Determination of quality and confidence flags 
As shown in Section 2.1, dust detection quality flags (00/10/11) are defined as low, medium and high 
confidence, respectively. Determination of the level of confidence in quality flag relies on several 
following steps: 
 

1. If the pixel is determined as bright surface, masked as confident adjacent cloud or cloud shadow 
in cloud mask, then the dust flag detected in this pixel is assigned with a quality flag value of 00, 
i.e., low confidence 

 
2. The magnitude of AAI and DSDI are also used to assess the quality of detection.   
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In general, there are two types of test, i.e., 1). Value of the test < threshold.  2). Value of the test > 
threshold. Details descriptions on how the confidence value (given as Con_value) is assigned for each 
type of tests are given as following: 
 
Test type 1:  used if test looks like value < threshold or value ≤ threshold 
 
The Con_value is calculated as following: 
 

If (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 then Con_value = 0.0 
 

If 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 ≤  (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 then Con_value = 0.5 
 

If (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) ≥ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 then  Con_value = 1.0 
 
Where 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 is 0.05×threshold, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 is 0.30×threshold. However, under the circumstance that the 
threshold is 0.0, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 and 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 is assigned with values of 0.05 and 0.3, respectively. 
 
Test type 2: used if looks like value > threshold or value ≥ threshold 
    
 The Con_value is calculated as following: 
 

If (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 then Con_value = 0.0 
 

If 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 ≤  (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 then Con_value = 0.5 
 

If (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑡𝑡ℎ𝑟𝑟𝑟𝑟ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ≥ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 then Con_value = 1.0 
 

Where 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 is 0.05×threshold, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 is 0.30×threshold. However, under the circumstance that the 
threshold is 0.0, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 and 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 is assigned with values of 0.05 and 0.3, respectively. 

 
Test type 3: used if looks like: upper threshold (< or ≤) value (< or ≤) lower threshold 
 
The Con_value is calculated as following: 
 
 𝑑𝑑𝑑𝑑 =  (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

3
 

 
If 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  𝑑𝑑𝑑𝑑)  

or   (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑑𝑑𝑑𝑑 < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) then  Con_value = 0.0 
 

If (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑑𝑑𝑑𝑑 ≤ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤  𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 −  𝑑𝑑𝑑𝑑) then Con_value = 1.0  
 
 
Once Con_value is calculated for individual test, the ensemble confidence value is then calculated by 
averaging the confidence value for all the tests. Final confidence level is determined by the ensemble 
confidence value. i.e., high confidence for ensemble confidence value ≥0.66, low confidence for 
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ensemble confidence value ≤0.33, medium confidence for ensemble confidence value >0.33 and <0.66.  
Details on the determination of confidence level for dust detection over land are given as following: 
  
 

a. For deep-blue dust detection as shown in section 3.4.2.2.2 
 
   Test1: AAI ≥ 11.5 
   Test2: DSDI ≥ 0.0 
 
 Intermediate confidence value (con_valuea) is calculated by averaging the con_value for Test1 
and Test2 as following: 
 
con_valuea = con_value(Test1)+ con_value(Test2)

2
            (6) 

 
b. For IR and visible-based dust detection shown in section 3.4.2.2.1 

 
1. Thin dust (1): 
 
Test 1: BTM15 − BTM16  ≤  −0.2K  
Test 2: BTM12 − BTM15  ≥  15𝐾𝐾  
Test 3: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 0.08  
 

Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
Test2, and Test3 as following: 
 
con_valueb = con_value(test1)+ con_value(test2)+con_value(test3)

3
     (7) 

 
2. Thin dust (2): 
 
Test 1: BTM12 − BTM15  ≥  20𝐾𝐾 
 

Intermediate confidence value (con_valueb) is equal to the con_value of Test1 as following: 
 

con_valueb = con_value(test1)                             (8) 
 

3. Thick dust 
Test1 : BTM15 − BTM16  ≤  −0.2K 
Test2 : BTM12 − BTM15  ≥  20𝐾𝐾  
Test3 : 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 0.2  

Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
Test2, and Test3 as following: 
 
con_valueb = con_value(test1)+ con_value(test2)+con_value(test3)

3
     (9) 
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Ensemble confidence value is finally calculated by summing up the con_valuea and con_valueb. 
 

3.4.2.2.4 Example result 
The results of an application of the JPSS SM algorithm to S-NPP VIIRS data on September 14, 2013 at 
around 20:20 UTC is shown in Figure 13.  The top panel the figure is a red-green-blue (RGB) false 
color image of the scene showing the location of the dust outbreak. The bottom panel of the figure 
shows the results of the smoke/dust detection. Pixels flagged as dusty are colored as yellow to brown, 
which is scaled with AAI values, as shown in equation 5. A second example is given in Figure 13. 
 

 
Figure 13: Top: a red-green-blue (RGB) false color image of S-NPP observation data on September 14, 2013 at 
approximate 20:20 UTC.  Bottom: the results of the dust detection where pixels flagged as dusty are colored as 
yellow to brown, scaled by DAI.  
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Figure 14:  Top: a red-green-blue (RGB) false color image of S-NPP observation data on December 14, 2013 at 
approximate 19:55 UTC.  Bottom: the results of JPSS ADP algorithm where pixels flagged as dusty are colored as 
yellow to brown, scaled by DAI; pixels flagged as smoke are colored as pink to red, scaled by SAI. 
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Figure 15:  Detailed flow chart of IR-visible based dust detection over water 
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Figure 16: Detailed flow chart of deep-blue dust detection over water. 

3.4.2.3 Dust Detection over Water  
Dust detection over water has also two paths. If either path identifies the presence of dust, then dust is 
shown to be present in the product. The first path is the same algorithm as for GOES-R Advance 
Baseline Imager (ABI) to detect dust over land, which is based on the spectral variability tests at visible 
bands and negative brightness temperature difference between two wavelengths in IR regions; the 
second one is designed for VIIRS, by taking advantage of observations of VIIRS at deep-blue bands. 
The path is determined by the availability of channels, if no deep-blue channels, as M1 and M2 for 
VIIRS, are available, the algorithm only takes the first path. Otherwise, both paths are taken. 

3.4.2.3.1  IR and visible-based dust detection 
Figure 15 is a detailed flow chart of the algorithm to detect the presence of dust over water during the 
daytime. The tests are not performed over snow and ice or in the presence of ice clouds. 
 
The specific tests as currently implemented are 

Process each pixel

Valid inputs? 

Dust

Update output for current pixel

undetermined

Yes

Yes

No

Uniformity test:
StdR M7>=0.003 

&RM11>0.17

Dust  Detection:
AAI >4.0 & 

NSDI>=-10.0

Yes

R M1>=0.5 

Cloud

Yes

No

No

Yes

No

Snow/ice? 

Cloud ? 

Snow/ice

Cloud

Cloud

Yes

Sun-glint Test 

glint

Yes



 51 

1) Test for the presence of snow/ice by using both primary snow/ice mask and internal snow/ice mask, 
which is given in section 3.4.2.1. Test for the presence of clouds relies on VIIRS cloud mask. Pixel 
is considered to be obscured by clouds if any one of these two cloud mask tests in Table 10, i.e., 
pCirrus2 and pFlag1, is true. Any pixel with positive snow/ice or clouds is not processed.     

 
2) Test for the quality of the input radiance data 

 
• RM3, RM5, RM7 > 0.0  & 
• BTM12, BTM15, BTM16 > 0.0K 
• VIIRS quality flags for above channels equal to zero, indicating quality of the 

data is assured.   
 
 

3) Uniformity and spectral tests for residual clouds 
    

• MeanRM7 > 0.0 and StdRM7 ≤ 0.005 & 
• RM3 ≤ 0.3  & 
• R1 < 2.0 

 
4) Tests for dust 
        First of all, test show bellow determines which path to take: 
 

4K < BTM12 − BTM15  ≤  20k 
 

If the above test is passed then proceed to thin dust test(4.1), otherwise proceed to thick dust 
test (4.2).  

  
4.1 thin dust test 

                For thin dust test, the following tests are applied: 
 

BTM15 − BTM16  ≤  0.1k and −0.3 ≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤  0.0 
R1 < 1.5 

BTM12 − BTM15 >  8.6𝑘𝑘 and BTM15 − BTM16 < 0.1𝑘𝑘 
 

if any one of them is satisfied, then thin dust is detected for the processed pixel. 
 

 
4.2 thick dust test 
For thick dust detection, flowing test are applied: 
 

BTM11 − BTM15 >  20K 
−0.3 ≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤  0.05 

BTM15 − BTM16 <  0.0K 
 
if all of them are satisfied, then thick dust is detected for the processed pixel. 
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5) Set dust mask flag 
 

3.4.2.3.2  Deep-blue dust detection over water 
 
 
Figure 16 is a detailed flow chart of the algorithm to detect the presence of dust over water during the 
daytime. The tests are not performed over snow and ice or in the presence of clouds. 
 
The specific tests as currently implemented are 
6) Test for the presence of snow/ice by using primary snow/ice mask, and if the primary is not 

available, then using secondary snow/ice mask. Test for the presence of clouds relies on VIIRS 
cloud mask and reflectance at M1. Pixel is considered to be obscured by clouds if any of these three 
cloud mask tests in Table 10, i.e. pCiirus1, pCirrus2 and pCirrus3, is true, or RM1≥0.5. Any pixel 
with the presence of snow/ice or clouds is not processed.   

 
7) Test for the quality of the input radiance data 

 
• RM1, RM2, RM7, RM11 > 0.0 & 

 
• VIIRS quality flags for above channels equal to zero, indicating quality of the data is 

assured.   
 
 
 

8) Dust detection: AAI and DSDI tests – check for pixels with dust  
 

If AAI >4.0 and DSDI≥-10.0, dust exists for the pixel. Once dust is detected for the pixel, dust 
flag is set and the value of the Dust Aerosol Index (DAI), which is associated with the intensity 
of the dust, is obtained by scaling AAI as following: 

 
          DAI = AAI − 4.0        (10) 

 
9) Uniformity and spectral tests for residual clouds 

 
If StdRM7≥0.003 and RM11>0.17 then residual cloud exists and the pixel is assigned as cloudy. 

 

3.4.2.3.3 Determination of quality and confidence flags 
The approach to determine the quality flag with confidence value is the similar to what has described in 
section 3.4.2.2.1. . Dust detection quality flag (00/10/11) are defined as lower, medium and high 
confidence, respectively. Determination of the level of confidence in quality flag relies on several 
following steps: 
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1. If the pixel is masked as confident adjacent cloud or cloud shadow in cloud mask, or within the 
sun glint, then the dust flag detected in this pixel is assigned a quality flag with an value of 00, 
i.e., low confidence 

 
2. If the pixel detected having dust passed through step 1, then the confidence of this detection is 

further determined by closeness of both AAI and DSDI to their threshold. The details on how to 
calculate the confidence values for individual tests and ensemble confidence value are given in 
section 3.4.2.2.1.  
 

a. For deep-blue dust detection as shown in section 3.4.2.3.2 
 
   Test1: AAI >  4.0 
   Test2: DSDI ≥ -10.0  
 
 
 Intermediate confidence value (con_valuea) is calculated by averaging the con_value for Test1 
and Test2 as following: 
 
con_valuea = con_value(Test1)+ con_value(Test2)

2
      (11) 

 
b. For IR and visible-based dust detection shown in section 3.4.2.2.1 

 
1. Thin dust (1): 
 
Test 1: BTM15 − BTM16  ≤  −0.1K  
Test 2: −0.3 ≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤  0.0 
Test 3: BTM12 − BTM15 >  8.6𝑘𝑘 
 

Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
Test2, and Test3 as following: 
 
con_valueb = con_value(test1)+ con_value(test2)+con_value(test3)

3
     (12) 

 
2. Thin dust (2): 
 
Test 1: 4K < BTM12 − BTM15  ≤  20k 
Test2: R1 < 1.5 
 
 

Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
and Test2 as following: as following: 
 

                     
con_valueb = con_value(test1)+ con_value(test2)

2
                        (13) 
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• Thick dust 
Test1 : BTM15 − BTM16  ≤  −0.2K 
Test2 : BTM12 − BTM15  ≥  20𝐾𝐾  
Test3 : 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 0.2  

Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
Test2, and Test3 as following: 
 
con_valueb = con_value(test1)+ con_value(test2)+con_value(test3)

3
     (14) 

 
 
Ensemble confidence value is calculated by summing up the con_valuea and con_valueb. Final 
confidence level is set as low if ensemble confidence value is ≤ 0.25; confidence level is set as 
medium if ensemble confidence value is > 0.25 but <0.50; confidence level is set as high if 
ensemble confidence value is ≥0.50.             

 

3.4.2.3.4  Example results 
The results of an application of the JPSS ADP algorithm to S-NPP VIIRS data on February 1, 2015 at 
approximate 11:25 to 11:28 UTC is shown in Figure 17.  The top panel is a RGB images. The image at 
the bottom panel shows the results of the water and land dust detection algorithm, where orange and 
brown regions indicate the presence of dust. It is clearly see that the RGB image and the JPSS ADP dust 
mask image show qualitative agreement. 
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Figure 17: S-NPP VIIRS observations on Feb 1, 2015 at approximate 11:25 to 11:28 UTC.  A dust outbreak is flowing 
from the Sahara desert over the adjacent Mediterranean Ocean. 

 

3.4.2.4 Smoke Detection over Land 
 
Smoke detection over land has two paths. If either path identifies the presence of smoke, then smoke is 
shown to be present in the product. The first path is the same algorithm as for GOES-R Advance 
Baseline Imager (ABI) to detect thick smoke, which is based on the spectral variability tests at visible 
bands; the second one is designed for VIIRS, by taking advantage of observations of VIIRS at deep-blue 
bands.  Figure 18 is a detailed flow chart of the first algorithm to detect the presence of smoke over 
land during daytime. A detailed flow chart of the second algorithm to detect the presence of smoke over 
land during daytime is given in Figure 15: Detailed flow chart of thick smoke detection over land. Note 
that, the tests are not performed in the presence of snow/ice and ice clouds 
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Figure 18: Detailed flow chart of IR-Visible based smoke detection over land. 

3.4.2.4.1 IR-Visible based smoke detection 
Figure 14 is a detailed flow chart of the first algorithm to detect the presence of smoke over land during 
daytime.  
 
The specific tests as currently implemented sequentially are: 
 

1) Test for the presence of snow/ice by using primary snow/ice mask, and if the primary is 
not available, then using secondary snow/ice mask. Test for the presence of clouds relies 
on VIIRS cloud mask. Pixel is considered to be obscured by clouds if any of these five 
cloud mask tests in Table 10, i.e. pCiirus1, pCirrus2, pCirrus3, pFlag1 and, pFlag2, is 
true. Any pixel with the presence of snow/ice/clouds is not processed.     
 

2) Test for the quality of the input reflectance data 
 

• RM3, RM5, RM7 , RM11 > 0.0  & 
• BTM13, BTM15 > 0.0K 
• VIIRS quality flags for above channels equal to zero, indicating quality of the 

data is assured.   
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3) Fire detection (hot spot)  
 
Fire hot spot is determined by the combination of brightness temperature at M13 (BTM13) 
and the brightness temperature difference between M13 and M15 (BTM13  −  BTM15 ). If 
BTM13 > 360K and BTM13  −  BTM15 > 10K, then the processed pixel is indicated having 
fire.  
 

4) Spectral and uniformity tests for thick smoke 
For detection of thick smoke, the following spectral contrast and uniformity tests are 
applied: 
 

RM11 < 0.2 
RM5 > (0.06 + RM11)  
R1 ≥ 0.85  
R2 ≥ 1.0 
StdRM5 ≤ 0.04  
 

Where RM11 and RM5 are reflectance at M11 and M5, respectively. R1 and R2 are spectral 
contrast defined in section 3.4.2. StdRM5 is the standard deviation of RM5 in a 3 by 3 box 
centered with the processed pixel.   
If all tests shown above are passes, thick smoke is detected for the processed pixel. 
 

5) Set smoke flag 
 

• If fire or thick smoke is indicated in the process pixel, then thick smoke flag is set  
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Figure 19: Detailed flow chart of deep-blue smoke detection over land 

 

3.4.2.4.2 Deep-blue smoke detection 
 
The specific tests as currently implemented are: 
1) Test for the presence of snow/ice by using primary snow/ice mask, and if the primary is not 

available, then using secondary snow/ice mask. Test for the presence of clouds relies on VIIRS 
cloud mask and reflectance at M1. Pixel is considered to be obscured by clouds if any of these three 
cloud mask tests in Table 10, i.e. pCiirus1, pCirrus2 and pCirrus3, is true, or RM1 ≥0.5. Any pixel 
with the presence of snow/ice or clouds is not processed.   

 
2) Test for the quality of the input radiance data 

 
• RM1, RM2, RM7, RM11 > 0.0 & 
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• VIIRS quality flags for above channels equal to zero, indicating quality of the data is 
assured.   

 
 

3) Smoke detection: AAI and DSDI tests – check for pixels with thin/thick dust  
 

If AAI >5.0 and DSDI≤-3.0, thin smoke exists for the processed pixel. However, If AAI >9.0 
and DSDI≤-2.0 and 0.2<RM1<0.4, then thick smoke exists for the processed pixel.  Once smoke 
(either thin or thick) is detected for the pixel, smoke flag is set and the value of the Smoke 
Aerosol Index (SAI), which is associated with the intensity of the smoke, is obtained by scaling 
AAI as following: 

 
         SAI = AAI − 5.0        (15)                                          

           
4) Uniformity and spectral tests for residual clouds 

 
If the processed pixel is identified as having smoke from above steps, but StdRM1≥0.01, then residual 
cloud exists and the processed pixel is assigned as cloudy. 

 

3.4.2.4.3 Determination of quality and confidence flags 
 
The approach to determine the quality flag with confidence value is the similar to what has described in 
section 3.4.2.2.1. . Smoke detection quality flag (00/10/11) are defined as lower, medium and high 
confidence, respectively. Determination of the level of confidence in quality flag relies on several 
following steps: 
 

1. If the pixel is masked as confident adjacent cloud or cloud shadow in cloud mask, then the 
smoke flag detected in this pixel is assigned a quality flag with an value of 00, i.e., low 
confidence 

 
2. If the pixel detected having smoke passed through step 1, then the confidence of this detection is 

further determined by closeness of tests to their threshold. The details on how to calculate the 
confidence values are given in section 3.4.2.2.1.  
 
 

c. For Deep-blue smoke detection (3) as shown in section 3.4.2.3 
 
For thin smoke: 
 

Test1: AAI > 5.0 
Test2: DSDI ≤ -3.0 

 
For thick smoke: 
 

Test1: AAI > 9.0 
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Test2: DSDI ≥ -2.0 
 
Intermediate confidence value (con_valuea) is calculated by averaging the con_value for Test1 
and Test2 as following: 
con_valuea = con_value(Test1)+ con_value(Test2)

2
      (16) 

 
d. For thick-smoke detection shown in section 3.4.2.4.1  
 

1) Smoke from fire as shown in section 3.4.2.4 
 
Test1: BTM13 > 350K 
Test2: BTM13  −  BTM15 > 10K 

 
Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
and Test2 as following: 
 
con_valueb = con_value(Test1)+ con_value(Test2)

2
      (17) 

 
 
2) Thick smoke as shown in section 3.4.2.4 
 
Test1: RM11 < 0.2   
Test2: RM5 > (0.06 + R2.25µm) 
Test3: R1 ≥ 0.85 
Test4: R2 ≥ 1.0   
 
Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
,Test2, Test3 and Test4 as following: 
 
con_valueb = convalue(Test1)+ convalue(Test2)+con_value(Test3)+ con_value(Test4)

4
  (18) 

 
 
e. Ensemble confidence  

 
Ensemble confidence value is calculated by summing up con_valuea and con_valueb. Then, 
confidence level for quality flag is set as low if ensemble confidence value is ≤ 0.33; confidence 
level is set as medium if ensemble confidence value is > 0.33 but <0.66; confidence level is set 
as high if ensemble confidence value is ≥0.66.             

 

3.4.2.4.4 Example result 
The result of an application of the smoke detection to S-NPP VIIRS observations on August 3, 2014 at 
20:10 UTC is shown Figure 20. Smoke over west cost of U.S. is detected. Comparison of smoke mask to 
RGB images shows that smoke over land was well captured. 
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Figure 20:  Top: a red-green-blue (RGB) false color image of S-NPP VIIRS observation data on August 3, 2014 at 
approximate 20:10 UTC.  Bottom: the results of the smoke detection where pixels flagged as smoky are pink to red. 

3.4.2.5 Smoke detection over water 
Smoke detection over water has two paths. If either path identifies the presence of smoke, then smoke is 
shown to be present in the product. The first path is the same algorithm as for GOES-R Advance 
Baseline Imagery to detection thick smoke, which is based on the spectral variability test at visible 
bands; the second one is designed for VIIRS, by taking advantage of observations of VIIRS at deep-blue 
bands. Figure 21 is a detailed flow chart of the first algorithm to detect the presence of smoke over water 
during daytime. A detailed flow chart of the second algorithm to detect the presence of smoke over 
water during daytime is given in Figure 22. Note that, the tests are not performed in the presence of 
snow/ice and ice clouds 
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Figure 21: Detailed flow chart of Visible-NIR based smoke detection over water. 
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Figure 22: Detailed flow chart of deep-blue smoke detection over water. 

3.4.2.5.1 Visible-NIR based Smoke detection   
 
The specific tests as currently implemented sequentially are 

1) Test for the presence of snow/ice by using primary snow/ice mask, and if the primary is 
not available, then using secondary snow/ice mask. Test for the presence of clouds relies 
on VIIRS cloud mask. Pixel is considered to be obscured by clouds if any of these four 
cloud mask tests in Table 10, i.e. pCiirus1, pCirrus2, pCirrus3 and pFlag1, is true. Any 
pixel with positive snow/ice/cloud mask is not processed.     
 

2)  Test for the quality of the input radiance data 
 
 

• RM2, RM7, RM10 , RM11 > 0.0  
• VIIRS quality flags for above channels equal to zero, indicating quality of the 

data is assured.   
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     Uniformity test with StdRM7 is first performed to decide the following detetcion 
path. If StdRM7 ≤0.003,thick smoke determination test is performed. Otherwise, thin 
smoke determination test is performed. 

             
 

 3.1)  Thick smoke determination test 
 
Thick smoke is detected for the processed pixel if the all of the following tests are 
passed: 
 
R3 ≥10.0  
RM2 ≥0.12  
0.02=<RM10 <0.045  
R4 <1.0 

 
Where RM2 and RM11 are respectively the reflectance at M2 and M11, R3 and R4 are 
spectral contrast defined in section 3.4.2. 
 
If above tested are not passed, then further tests are performed, and thin smoke is 
identified if the all of the following tests are passed: 

 
                  RM7>0.055 
                  R3 ≥ 5.0 

 
Where RM7 is the reflectance at M7, R3 is spectral contrast defined in section 3.4.2. 

 
3.2). thin smoke determination test 
 

Thin smoke is detected for the processed pixel if the all of the following tests are 
passed: 

 
RM7>0.055 
R3 ≥5.0 
R4 <0.6  
 

Where RM7 is the reflectance at M7, R3 and R4 are spectral contrast defined in 
section 3.4.2. 

 
4) Set smoke flag 

If either thin or thick smoke is detected for the processed pixel, then smoke flag is 
set. 

3.4.2.5.2 Deep-blue smoke detection 
The specific tests as currently implemented are: 
1) Test for the presence of snow/ice by using primary snow/ice mask, and if the primary is not 

available, then using secondary snow/ice mask. Test for the presence of clouds relies on VIIRS 
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cloud mask and reflectance at M1 (RM1) Pixel is considered to be obscured by clouds if any of these 
three cloud mask tests in Table 10, i.e. pCiirus1, pCirrus2 and pCirrus3, is true, or RM1 ≥0.5. Any 
pixel with the presence of snow/ice or clouds is not processed.   

 
2) Test for the quality of the input radiance data 
 

• RM1, RM2, RM7, RM11 > 0.0 & 
 

• VIIRS quality flags for above channels equal to zero, indicating quality of the data is 
assured.   

 
3) Turbid/shallow water and algae bloom test 
 
The MODIS heritage turbid/shallow water test described in Li et al. (2003) is used to identify turbid 
water containing suspended sediments and also shallow water, in which smoke detection will not be 
carried out to reduce false alarm must. The sediment masking algorithm follows: the observed 
reflectances at M3, M8, M10, and M11 are used to derive the power law fit using least squares 
minimization. The computed reflectances (R’

M4) at M4 based on the power law fit are then compared 
with the observed reflectances (RM4) at the same band. The specific criteria to trigger that the pixel is 
affected by turbid water are: 
 

                 RM4  −  RM4
′ >  0.015 

              RM3  < 0.25                                        (19) 
              RM11  <  0.10    

 
In addition, for water surface, phytoplankton bloom will be miss-identified as smoke plume by the 
above smoke detection algorithm. To eliminate this false alarm, any pixel which has phytoplankton 
bloom, smoke detection will be carried out. To determine if a pixel contains phytoplankton bloom, and 
index (SABI), which is defined as following, is used: 
 
            𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = RM4−RM5

RM4+RM7 
         (20) 

 
any pixel with an SABI value larger than 0.28 is considered as having phytoplankton bloom.   
  

 
4) Smoke detection: AAI and DSDI tests – check for pixels with thin/thick dust  

 
If AAI >4.5, DSDI≤-10.0 and RM11<0.1, thin smoke exists in the processed pixel. However, If AAI 
>10.0 and DSDI≤-4.0, thick smoke exists in the processed pixel.Once smoke (either thin or thick) is 
detected for the pixel, smoke flag is set and the value of the Smoke Aerosol Index (SAI), which is 
associated with the intensity of the smoke, is obtained by scaling AAI as following: 
 
         SAI = AAI − 4.5             (21) 
             

5) Uniformity and spectral tests for residual clouds 
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If the processed pixel is identified as having smoke from above steps, but StdRM7≥0.005, then 
residual cloud exists and the processed pixel is assigned as cloudy. 

3.4.2.5.3 Determination of quality and confidence flags 
The approach to determine the quality flag with confidence value is the similar to what has described in 
section 3.4.2.2.1. . Smoke detection quality flag (00/10/11) are defined as lower, medium and high 
confidence, respectively. Determination of the level of confidence in quality flag relies on several 
following steps: 
 

3. If the pixel is masked as confident adjacent cloud or cloud shadow in cloud mask, then the 
smoke flag detected in this pixel is assigned a quality flag with an value of 00, i.e., low 
confidence 

 
4. If the pixel detected having smoke passed through step 1, then the confidence of this detection is 

further determined by closeness of tests to their threshold. The details on how to calculate the 
confidence values are given in section 3.4.2.2.1.  
 
 

f. For Deep-blue smoke detection (3) as shown in section 3.4.2.5.2. 
For thin smoke: 
 
Test1: AAI > 4.5 
Test2: DSDI ≤ -10.0 
 
For thick smoke: 
 
Test1: AAI > 10.0 
Test2: DSDI ≤ -4.0 
 
Intermediate confidence value (con_valuea) is calculated by averaging the con_value for Test1 
and Test2 as following: 
 
con_valuea = con_value(Test1)+ con_value(Test2)

2
      (22) 

 
 
g. For visible-NIR based smoke detection shown in section 3.4.2.5.1  
 
1) Thin Smoke (1) as shown in section 3.4.2.5.1 

 
Test1: R3 ≥ 5.0 
 
Intermediate confidence value (con_valueb) is EQUAL TO Con_value of Test1. 
 

2) Thin Smoke (2) as shown in section 3.4.2.5.1 
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Test1: R3 ≥ 5.0 
Test2: R4 <0.6  
 
Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
and Test2 as following: 
 
con_valueb = con_value(Test1)+ con_value(Test2)

2
      (23) 

 
 

3) Thick smoke (3) as shown in section 3.4.2.5.1 
 
Test1: R3 > =10.0   
Test2: R0.47µm > =0.12 
Test3: 0.02≤R1.61µm <0.45 
Test4: R4 <1.0   
 
Intermediate confidence value (con_valueb) is calculated by averaging the con_value for Test1 
,Test2, Test3 and Test4 as following: 
 
con_valueb = convalue(Test1)+ convalue(Test2)+con_value(Test3)+ con_value(Test4)

4
  (24) 

 
 
h. Ensemble confidence  

 
Ensemble confidence value is calculated by summing up con_valuea and con_valueb. Then, 
confidence level for quality flag is set as low if ensemble confidence value is ≤ 0.33; confidence 
level is set as medium if ensemble confidence value is > 0.33 but <0.66; confidence level is set 
as high if ensemble confidence value is ≥0.66.             

 

3.4.2.5.4 Example result 
The results of an application of the JPSS ADP algorithm to S-NPP VIRRS data on July 11, 2015 at 
approximate 13:00 UTC is shown in Figure 23. The smoke feature stretched from the east coast of 
Greenland to the central Atlantic Ocean is shown on RGB image. This ribbon of smoke aloft from forest 
fires over Russia is transported eastward across the North Atlantic Ocean by the circulation of a large 
area of low pressure on 17 July 2015. The leading edge of the smoke had moved over the British Isles 
and was headed toward Scandinavia. It is clear seen that the detected coverage of the smoke is very 
similar to the pattern that observed from the RGB image, indicating the success of ADP product 
algorithm.  
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Figure 23:  Top: a red-green-blue (RGB) false color image of S-NPP VIIRS observations on July 11, 2015 at 
approximate 12:58 UTC.  Bottom: the results of ADP product algorithm.

3.4.3 Algorithm Output 
The final outputs of this algorithm are both yes/no flag and quality flag for 6 categories, i.e., volcanic 
ash, clouds, smoke, dust, none/unknown/clear and snow/ice, values for smoke/dust aerosol index 
(SAI/DAI), non-dust aerosol index (DSDI) and smoke concentration, and quality flags for the 
parameters are listed below in Table 12.  

Table 12 JPSS ADP algorithm output summary 

Name Type Description Dimension 
Volcanic ash 

flag Integer Volcanic ash flag (1/0 - yes/no) 
Passed down from cloud mask product grid (xsize, ysize) 

Clouds flag Integer clouds flag (1/0 – yes/no) grid (xsize, ysize) 

Smoke flag Integer smoke flag (1/0 – yes/no) grid (xsize, ysize) 

Dust flag Integer Dust flag  (1/0 – yes/no) grid (xsize, ysize) 
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NUC Flag Integer None/Unknown/Clear flag (1/0 – yes/no) grid (xsize, ysize) 

Snow/ice flag Integer Snow/Ice flag (1/0 – yes/no) grid (xsize, ysize) 
Quality flag for 

Detected 
Volcanic Ash 

Binary 
(2 bits) 

Low/Medium/high confidence 
(10/01/11) for the detected flag 

(passed down from cloud mask product) 
grid (xsize, ysize) 

Quality flag for 
Detected 
Smoke 

Binary 
(2 bits) 

Low/Medium/high confidence 
(10/01/11) for the detected flag grid (xsize, ysize) 

Quality flag for 
Detected Dust 

Binary 
(2 bits) 

Low/Medium/high confidence 
(10/01/11) for the detected flag grid (xsize, ysize) 

Quality flag for 
Detected NUC 

Binary 
(2 bits) 

Low/Medium/high confidence 
(10/01/11) for the detected flag grid (xsize, ysize) 

Smoke 
Detection 

algorithm path 

Binary 
(2 bits) 

00: Deep-blue based algorithm 
00: IR-Visible based algorithm 

11: Both algorithm 
grid (xsize, ysize) 

Dust Detection 
Algorithm path  

Binary 
(2 bits) 

00: Deep-blue based algorithm 
00: IR-Visible based algorithm 

11: Both algorithm 
grid (xsize, ysize) 

Dust/smoke 
Aerosol Index 

(DAI/SAI) 
float Dust/aerosol index for pixel values with 

dust/smoke grid (xsize, ysize) 

Non-dust 
Aerosol Index float Non-dust Aerosol index values for pixel with 

smoke/dust grid (xsize, ysize) 

Smoke Mass 
concentration float Smoke mass concentration (µg/m3) value for  

pixel with smoke grid (xsize, ysize) 

 
In addition the following meta data information is included in the output: 

• Product information 
o project  
o naming authority 
o institution  
o standard name vocabulary 
o title and summary 
o processing level 
o version number 
o history 
o reference 

• Date and Time 
o product creating time  
o day/night flag 
o granule starting time(Year-Month-Day-hour:minutes:seconds)  
o granule ending time(Year-Month-Day-hour:minutes:seconds)  

• Bounding Box 
o Latitude of the first field of view at the first scanline  
o Latitude of the last field of view at the first scanline  
o Latitude of the first field of view at the last scanline  
o Latitude of the lat field of view at the last scanline  
o Longitude of the first field of view at the first scanline  
o Longitude of the last field of view at the first scanline  
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o Longitude of the first field of view at the last scanline  
o Longitude of the lat field of view at the last scanline  
o Geospatial bounds 

• Satellite 
o Orbit number  
o Ascending/descending flag  

• Instrument 
• Number of good dust retrievals 
• Number of good smoke retrievals 
• Total number of attempted retrievals 
• Percent of retrievals with Good (determined) smoke retrievals 
• Percent of retrievals with Bad (not determined) smoke retrieval 
• Percent of retrievals with Good (determined) dust retrievals 
• Percent of retrievals with Bad (not determined) dust retrieval 
• Percent of retrievals with Low Confidence Smoke Detection 
• Percent of retrievals with Medium Confidence Smoke Detection 
• Percent of retrievals with High Confidence Smoke Detection 
• Percent of retrievals with Low Confidence Dust Detection 
• Percent of retrievals with Medium Confidence Dust Detection 
• Percent of retrievals with High Confidence Dust Detection 

 

4 Test Datasets and Outputs 

4.1 Proxy Input Data Sets and validation data 

4.1.1 Input Data sets 
 
The VIIRS instrument flying on NASA’s Suomi-NPP satellites measures radiances at 16 wavelengths 
including infrared and visible bands with a spatial resolution of 750m at Nadir. The cloud mask is part 
of the Suomi-NPP Cloud Product [Ackerman et al., 1998, 2008; Frey et al., 2008; King et al., 2003; 
Platnick et al., 2003].  Due to the fact that Suomi-NPP VIIRS is identical to JPSS-VIIRS, currently S-
NPP VIIRS provides the optimum source of data for testing, the channels of Suomi-NPP VIIRS and 
those used in the JPSS VIIRS ADP algorithm is listed in Table 6. 
 
S-NPP VIIRS Sensor Data Record (SDR) data, VIIRS cloud mask product and Terrain Corrected 
Geolocation (GMTCO) were obtained from NASA Atmosphere Product and Evaluation and Test 
Element (PEATE) hosted at Space Science and Engineering Center (SSEC) in University of Wisconsin 
(http://peate.ssec.wisc.edu/).  The corresponding required inputs for JPSS ADP product, which are 
listed in Table 8, are derived from these data.  The Visible channel reflectances and Brightness 
Temperatures for the IR channels were from SDR data. Viewing and illumination geometry and geo-
location are from GMTCO. Various cloud tests used in ADP product are extracted from the 
corresponding bits in the VIIRS cloud mask product (VCM). Snow/ice mask from VCM is used as the 
primary source of snow/ice mask. Land/water mask is also from VCM. Both sun glint mask and 
day/night flag are internally calculated as described in section 3.12.   

http://peate.ssec.wisc.edu/
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4.1.2 Truth data 

4.1.2.1 Supervised S-NPP VIIRS RGB image and VIIRS Aerosol Optical Depth 
Product 

Both smoke and dust have a distinctive signature in RGB image, and NASA Natural Hazard system 
(http://earthobservatory.nasa.gov/NaturalHazards/) and MODIS rapid response system 
(http://rapidfire.sci.gsfc.nasa.gov/gallery/) routinely issues MODIS observations containing the smoke 
and dust outbreaks around the globe. By selecting VIIRS granules which are dominated by either only 
smoke or only dust, a supervised truth dataset were obtained. Then the corresponding Aerosol Optical 
Depth (AOD) product is used to identify the smoke/dust laden (AOD>0.2) and smoke/dust free 
(0.2>AOD>0.0) pixels; Note that, currently the IDPS NPP VIIIS AOD product over land only covers 
dark dense vegetation surface. VIIRS pixels with no AOD retrievals are considered as covered by clouds 
or snow/ice, bright surface over land and bad input data. These conditions are consistently unfavorable 
for detection of smoke/dust as well as discussed in Section 3. In addition, due to the difference in cloud 
screening procedures between VIIRS AOD product and JPSS ADP algorithm, only pixels with both 
VIIRS AOD product and JPSS ADP product indicating cloud-free conditions are used for quantitative 
analysis. 

4.1.2.2 Aerosol Robotic Network (AERONET) observations 
The ground-based remote sensing network, AEROsol Robotic Network (AERONET), equipped with 
well-calibrated sunphotometers over more than 100 sites throughout the world, measures and derives 
quality-assured aerosol optical properties for a wide diversity of aerosol regimes, for up to the last 10 
years [Holben et al., 1998; 2001; Dubovik et al., 2002]. These high quality data have been widely used 
as ground “truth” for evaluation and validation of satellite remote sensing of aerosols [Yu et al., 2003; 
Remer et al., 2005]. As for primary source of in situ observations, observations from AERONET will be 
the primary source, since the stratification of Angstrom Exponent data from AERONET indicates the 
presence of smoke or dust particles in the atmosphere.  However, the Angstrom Exponent used as a 
proxy for aerosol particle size parameter has a limited ability to separate different types of aerosols. At 
best it can provide a clean separation of dust and smoke but not haze and smoke (see Figure 24) 

http://earthobservatory.nasa.gov/NaturalHazards/
http://rapidfire.sci.gsfc.nasa.gov/gallery/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwis1Prz9qHIAhWGbB4KHe6zCGM&url=http%3A%2F%2Faeronet.gsfc.nasa.gov%2F&usg=AFQjCNFNXuA36_NXK4C70ud1_t8hnC7EPw
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Figure 24 : Top: histogram of Angstrom Exponent (AE) for pixels with smoke and haze in S-NPP VIIRS observations.  
Bottom: histogram of Angstrom Exponent (AE) for smoke, dust and haze from AERONET observations.  

 
The matchup strategies are as following: 

• Collocated AERONET and JPSS VIIRS ADP smoke/dust detection results 
– Spatial coverage: a circle with a radius of 25 km and centered on AERONET 

stations are chosen to determine the dominant SM type from JPSS ADP product. 
– Temporal average: AERONET measurements within a 30minutes window 

centered on the NPP VIIRS overpass time, at least three measurements are 
available. 

• Dominant SM type from JPSS ADP product 
– 80% of pixels in the circle are cloud, snow/ice and glint-free (for over water) 
– The type of more than half the valid retrievals was chosen as the dominant type 

from JPSS ADP product. 
• Classification of Aerosol Type over AERONET: 

– Smoke:  
     AOD>0.3 and AE>1.1 

– Dust:  
     AOD>0.3 and AE<0.6 
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4.1.2.3 CALIPSO VFM product 
With the launch of CALIPSO and CloudSat in the EOS A-Train formation in April 2006, the ability to 
conduct global satellite cloud product validation increased significantly. Besides cloud type, CALIPSO 
also identifies aerosol types including smoke and dust. Vertical Feature Mask (VFM) is the CALIPSO 
product which is used for validating VIIRS ADP product.  It gives not only vertical distribution of 
aerosol layer but also 6 types of aerosol, including clean marine, dust, polluted dust, polluted 
continental, clean continental, polluted dust and smoke.  However, the sparse spatial coverage and 
narrow swath of CALIPSO lidar observation limits the amount of match-up overpasses with VIIRS for 
smoke and dust cases.   

   
Figure 25: Schematic illustration of matchups between S-NPP VIIRS and CALISPO-VFM product. 

The matchup strategies are as following: 
• Time difference: ±30 minutes within the starting time of each CALIPSO VFM track. 

375m

330m

5km

CALIPSO

VIIRS pixels
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• Spatially, VIIRS pixel that is within ± 375m of the location of the middle profile (i.e., 8th profile) in 
each 5km trunk of CALIPSO VFM product is selected, then a box of 5 by 5 pixels, total of 25 pixels, 
centered over the selected pixel is matched. 

• SM Types in CALIPSO VFM are grouped as : 
           a. dust (including polluted dust)   
           b. smoke    
           c. cloudy     
           d. clear 
           f. others 
• SM Types in JPSS VIIRS ADP product are grouped in 5 by 5 box as : 
           a. dust 
           b. smoke 
           c. cloudy 

        d. Unknown/None/Clear  
• Determination the dominant SM type in CALIPSO VFM  

 
For each 5 km trunk of CALIPSO VFM, which consists of 15 profiles, the dominated aerosol type 
for each profile is first determined through the calculation of dust (, smoke and others) fraction (i.e., 
no of dust (, smoke and others) layer divided by the no. of aerosol layer from surface to 20.2 km. For 
profile without clouds at any layer, any aerosol type has the fraction larger than 80% is defined as 
the dominant type. If all of three is less than 80%, then the dominant type is defined as “others”. If 
clouds exist in any layer, this profile is defined as “cloudy”. Otherwise, this profile is defined as 
“clear”. The ensemble SM type for each 5km trunk is further determined as: dust if 12 out of 15 
profiles are dust, as smoke if 12 out of 15 profiles are dust, as others if not smoke or dust, as cloudy 
if any one of 15 profiles is cloudy or as clear if all of 15 profiles are clear.   

  
• Quality Control 
       Medium to high quality used 

4.2  Output from proxy data sets 

4.2.1. Output for Dust Detection 

4.2.1.1. Comparison with RGB image and AOT product 
 
Supervised RGB image can capture dust events very well since dust plumes look bright and brown in 
the image compared to cloud. Thus, RGB image can be used to validate the ADP product dust detection 
algorithm qualitatively. Therefore, we can apply dust detection algorithm to S-NPP VIIRS measurement 
of a dust event and compare the detection result with the VIIRS RGB image. One example is shown in 
Figure 26 for the NPP VIIRS observations on April 5, 2015 at around 09:59 UTC. Qualitative 
comparison of dust detection with VIIRS RGB image shows a good agreement. 
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Figure 26: TOP: S-NPP VIIRS RGB Image on April 5, 2015 at about 09:59 UTC. Middle: the results of the dust 
detection from JPSS ADP product. Bottom: S-NPP VIIRS AOD (only pixels with AOD > 0.2 are shown) 

  
Dust particles are mainly located near desert regions and downwind areas and a dust event is mainly 
associated with high aerosol optical depth (AOD) so that the AOD distribution retrieved from satellite 
observation can help us to qualitatively examine the ADP product dust detection algorithm. 

4.2.1.2. Comparison with CALIPSO VFM 
 
CALIPSO is onboard the same spacecraft as MODIS Aqua, which is afternoon satellites as S-NPP 
VIIRS and its VFM products provide vertical distribution of 6 aerosol types, including smoke and dust 
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over its narrow (a footprint with a 70m diameter) track. Although the sparse spatial coverage of 
CALIPSO lidar observations limits the number of overpass matchups with S-NPP VIIRS granule, Over 
a whole global during the time period of 2.5 yrs (from 2012 to June of 2015), many cases containing 
dust outbreak were found. And the possibility of using the S-NPP VIIRS and CALIPSO overpass and 
the CALIPSO aerosol type data to validate the dust detection in JPSS ADP product is explored.  
 

 

 

a 

b 
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Figure 27:  Comparison of dust detected (orange) using VIIRS ADP product algorithm with CALIPSO Vertical 
Feature Mask (VFM) on January 30, 2013, UTC 14:33. a) RGB image, b) Aerosol Optical depth from S-NPP VIIRS 
aerosol Product, c) Dust mask from ADP product, d) Dust (orange) on CALIPSO track, e) Dust (orange) detected 
with VIIRS ADP product algorithm on CALIPSO track, f) Dust vertical distribution on the part of CALIPSO track 
collocated with VIIRS ADP product, g) Dust from VIIRS ADP product on the same part of track as in b. 

First example is shown in Figure 27 for CALIPSO VFM vs. VIIRS ADP product for S-NPP VIIRS 
observations on January 30, 2013 at around 14:33 UTC. The dust plume is clearly visible in the RGB 
image (Figure 27 a). As shown in Figure 27(d), CALIPSO VFM indicates existence of dust over the 
middle part of CALIPSO track which has collocations with S-NPP VIIRS, and the dust is seen over the 
coast of West Africa and close to sunglint region. VIIRS ADP product dust mask over the co-located 
CALIPSO track is given in Figure 27 c.  
CALIPSO VFM data shows that dust was dispersed between the surface and 2 km (Figure 27 g).  First 
of all, it is clearly seen that there is a good agreement between the dust plume pattern detected by ADP 
product and the pattern shown in both RGB and VIIRS AOD (>0.2). Secondly, similar good agreement 

d 

c 

e 

f 

g 

JPSS SM 
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is also seen on CALIPSO VFM track. It is noted that this co-located overpass is right on the edge of a 
sun glint region where VIIRS ADP product data are not processed. Therefore, by excluding pixels in the 
overpass within sun glint and with VIIRS AOD less than 0.2, the agreement between VIIRS ADP 
product and CALIPSO VFM for this event is 83% and 85%, respectively for Accuracy and PTPD. The 
definition of accuracy (and PTPD) is given shown in equation in 4.31 
 
Unlike the case in Figure 27, the co-located overpass shown in Figure 28 between CALIPSO and S-BPP 
VIIRS is over land, the agreement between VIIRS ADP product and CALIPSO VFM is about 86 % and 
88%, respectively for Accuracy and PTPD.  
 
 

 
 

a 

b 
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Figure 28:  Comparison of dust detected (orange) using JPSS ADP product algorithm with dust (orange)  in 
CALIPSO Vertical Feature Mask (VFM) on June 30, 2015 at UTC 11:25. a) S-NPP VIIRS RGB image, b) Smoke/dust 
mask from JPSS ADP product, c) Dust (orange) on CALIPSO track, d) Dust (orange) detected with JPSS ADP 
product algorithm on CALIPSO track, e) Dust vertical distribution on the part of CALIPSO track collocated with 
JPSS ADP product, f) Dust from VIIRS ADP product on the same part of track as in b. 

 

4.2.2. Output for Smoke Detection 
 

4.2.2.1. Comparison with RGB image 
 
Smoke is associated with fire events and the spatial distribution of smoke plume is uniform and looks 
gray to a human eye compared to a cloud.  This feature is useful in identifying smoke plumes in a RGB 
image without difficulty. Thus, RGB image can be used to validate the ADP product smoke detection. 
One example is shown in Figure 29 for forest fire events over U.S. and Canada observed by S-NPP 
VIIRS on June 29, 2015. Qualitative comparison of smoke detection with S-NPP VIIRS RGB image 
shows a good agreement, especially for the thick smoke plumes over vegetated areas. 

c d 

e 

f 
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Figure 29:  Left: S-NPP VIIRS RGB Image on June 29, 2015 over North America. Right: the results of the smoke 
detection (pixels flagged as smoky are in colored red) from JPSS ADP product. 

  
In general, the two smoke plumes, one from Canada down to the Middle West in U.S. and another one 
over Alaska, identified by JPSS ADP products. i.e., pinkish to red color shown in the left image of 
Figure 29, are very consistent with the dark-gray area in RGB image (right image in Figure 29) where 
the elevated smoke plumes are shown.  It is also noted that patches of dust plumes, transported by 
crossing Atlantic Ocean from West Africa, are also identified in JPSS ADP product, i.e., yellow-brown 
color shown in the left image of Figure 29. Some false smoke were identified over the snow/ice edges, 
however, it is expected such false alarm will be eliminated after a better snow/ice mask is adopted.   
  

4.2.2.2. Comparison with CALIPSO VFM 
In Figure 30 and Figure 31, two cases of VIIRS smoke detection is shown for two different days in 
different years.  For both examples shown, VIIRS smoke detection mask agrees well with MODIS 
RGB image and the matchups with CALIPSO track show that the agreement between what CALIPSO 
observed and what VIIRS is showing is good.  Parts of the track where CALIPSO detects smoke, 
VIIRS identifies those pixels as clear-sky/clouds or the other way. It should be noted that we have not 
yet tested the sensitivity of our retrieval to the height of the aerosol layer and aerosol amount.  
Although, we can use CALIPSO to identify the height of the aerosol, we have not taken the validation 
efforts to the next level where we will be conducting “deep-dive” studies of individual case studies to 
understand the limitations of the algorithms.   
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Figure 30: Comparison of smoke detected (red)) using VIIRS ADP product algorithm with smoke in CALIPSO 
Vertical Feature Mask (VFM) on July 25, 2006, UTC 05:15. a. RGB image b. Aerosol Optical depth from MODIS C5 
aerosol Product. C.  Smoke (red) on CALIPSO track.  d. Smoke detected with VIIRS ADP product algorithm on 
CALIPSO track. e. Smoke vertical distribution on the part of CALIPSO track collocated with VIIRS ADP product d. 
smoke from VIIRS ADP product on the same part of track as in b. 

 

a b 
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e 
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Figure 31: Comparison of smoke detected (red) using VIIRS ADP product algorithm with smoke in CALIPSO 
Vertical Feature Mask (VFM) on October 2, 2007 at 17:50 UTC. a) RGB image, b) Aerosol Optical depth from 
MODIS C5 aerosol Product, c) Smoke (red) on CALIPSO track, d) Smoke detected with VIIRS ADP product 
algorithm on CALIPSO track, e) Smoke vertical distribution on the part of CALIPSO track collocated with VIIRS 
ADP product, d) smoke from VIIRS ADP product on the same part of track as in b. 
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e 

f 
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For smoke detection, two CALIPSO VFM vs.VIIRS ADP product cases are presented. They are both 
over land on July 23, 2006 at 05:15 UTC and October 2, 2007 at 17:50 UTC (Figure 30and Figure 31). 
The agreement between the VIIRS ADP product and CALIPSO VFM is 75% and 80% respectively.  
For a total of 22 smoke cases, the agreement between VIIRS ADP product and CALIPSO VFM is about 
80%. 
 

4.1.3.  Product Performance Evaluations  
Due to lack of true ground truth for the accuracy estimate, the evaluation of ADP product products is 
mainly based on the inter-comparison to other satellite based smoke and dust products (such as RGB 
image, HMS smoke analysis, and CALIPSO VFM product) and aerosol types derived from AERONET 
measurements. The statistics matrix for evaluating ADP product is consisted of three parameters. 
Among them, accuracy, this is defined as the Probability of Correct Detection (PCD), is semi-
quantitative and given as:   
 

100
FND+TND+FPD+TPD

TND + TPD ×=PCD       (4.3.1) 

 
In equation 4.3.1, TPD is true positive detection, TND is true negative detection, FPD is false positive 
detection, and FND is false negative detection. The primary validation approach will provide an overall 
performance of the algorithm but will not provide information on performance of the algorithm over 
different geographic regions.  Therefore, additional spot checks and statistics will be carried out. 
 
Because the accuracy of aerosol detection calculated using equation 4.3.1 will include true negative 
detects (clear sky pixels), it will not provide information on the true positive detects which a user might 
be interested in.  Therefore, other two parameters, i.e., Probability of True Positive Detection (PTPD) 
and Probability of False Positive Detection (PFPD) are computed using equations 4.3.2 and 4.3.3: 
 

100)(
)( ×= +FNDTPD

TPDPTPD  (4.3.2) 
 

100)(
)( ×= +TPDFPD

FPDPFPD  (4.3.3) 
 
 
As discussed in section 4.2, two types of truth data are used for quantitative evaluations of JPSS ADP 
product performance. One is the AERONET observations and the other one is CALIPSO VFM product. 
By collocating outputs from JPSS VIIRS ADP product algorithm run with S-NPP VIIRS measured 
radiance as proxy with these two types of truth data, statistics on accuracy, PTPD, and PFPD are 
calculated. The time period covers from January 1, 2013 to August 30, 2015. Details on the statics are 
given in the following two sections. 

4.2.1.1 Against AERONET observations 
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Table 13 Accuracy, Probability of True Positive Detection, and Probability of False Positive 
Detection of JPSS ADP product for Dust detection over AERONET Stations 

Stations        Year True 
positive 

False 
positive 

True 
negative 

False 
negative 

Accuracy 
(%) 

PTPD 
(%) 

PFPD 
(%) 

Darkar 
2013 63 1 106 10 93.9 86.3 0.2 

2014 74 3 45 10 90.1 88.1 0.4 

Solar_Village 
2013 81 26 59 30 71.4 73.0 24.3 

2014 11 4 65 5 89.4 68.8 26.7 

Capo_Verde 
2013 44 0 56 3 97.1 93.6 0.0 

2014 53 1 17 1 97.2 98.1 0.2 

 

Table 14 Accuracy, Probability of True Positive Detection, and Probability of False Positive 
Detection of JPSS ADP product for smoke detection over AERONET Stations 

Stations 
(Biomass –burning) 

True 
positive 

False 
positive 

True 
negative 

False 
negative 

Accuracy 
(%) 

PTPD 
(%) 

POFD 
(%) 

Alta_Floresta 10 0 178 0 100.0 100.0 0.0 

Bonanza_Creek 1 0 48 0 100.0 100.0 0.0 

Jabiru 1 0 313 0 100.0 100.0 0.0 

Moscow_MSU_MO 16 2 92 1 97.2 94.1 11.0 

Tomsk_22 17 1 83 0 99.0 100.0 5.0 

Yakutsk 22 1 88 1 98.2 95.6 4.3 
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Table 13 and Table 14 is the results of comparisons of JPSS ADP product with AERONET 
Observations, respectively for smoke and dust over stations which is prevailing with the corresponding 
aerosol type. It is clearly see that, for dust prevailing stations (as shown in Table 13), the accuracy varies 
from 70 to 97%, PTPD is in the range from 73 to 98%, and PFPD can reach up to 27%. For smoke 
prevailing stations (as shown in Table 14), the number of true positive event is a lot smaller the accuracy, 
compared with dust, PTPD and  PFPD is respectively about 97~100%, 94~100% and 0~11%.   
To evaluate the overall performance of JPSS ADP product performance, ensemble values for accuracy, 
PTPD and PFPD are calculated with matchups between ADP products with observations over all the 
available AERONET stations during this 2 and half yrs time period (about 400 stations). The results are 
given in Table 15. It is seen that the ensemble value of Accuracy (i.e., Probably of Correct Detection), 
POPD and PFPD is 99%, 70% and 21% for dust and 97%, 92% and 11% for smoke.    
Therefore, based on these validation results, the JPSS VIIRS ADP product meets the mission 
requirement as shown in Table 1.  

 Table 15 Ensemble Accuracy, Probability of True Positive Detection, and Probability of False 
Positive Detection of JPSS ADP product for smoke and dust detection 

 

Type True 
positive 

False 
positive 

True 
negative 

False 
negative Accuracy PTPD PFPD 

Dust 2028 549 149897 882 99.0 69.7 21.3 

smoke 9324 1214 60397 799 97.2 92.1 11.5 

 

4.2.1.2   Against CALIPSO VFM product 
 
Performance evaluations of JPSS ADP product are also carried out by comparing with CALIPSO VFM 
product. The global coverage of CALIPSO VFM renders us to stratify the evaluation according to the 
land type, i.e., over land and over water. The results for over land and over water are given respectively 
in Table 16 and Table 17.  
It is seen that, for dust detection, the Accuracy and PTPD are 84 and 80% over land, while they can 
reach up 96 and 95% respectively, indicating more accurate dust detection can be obtained over water 
then over land. This is consistent with the results shown in Section 3.4.1., i.e., the surface reflectance 
over water is much smaller and uniform over water than that over land. As for smoke detection, the 
accuracy and PTPD are very similar between over land and over water. They are about 99% and 95% 
over land and 94% and 97% over water. In addition, it is clear that PFPD for smoke detection is much 
larger than that for dust detection. PFPD for smoke detection can reach up to 45%, while it is less than 
5% for smoke detection. 
In general, comparisons with CALIPSO VFM products indicate that JPSS ADP product meets the 
mission requirement as shown in Table 1.  
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Table 16. Accuracy, Probability of True Positive Detection, and Probability of False Positive 
Detection of JPSS ADP product for smoke and dust detection over land 
 

Type True 
positive 

False 
positive 

True 
negative 

False 
Negative 

Accuracy 
(%) 

PTPD 
(%) 

PFPD 
(%) 

DUST 10669 170 5676 2840 84.4 80.0 1.6 

SMOKE 307 159 19534 14 99.1 96.7 34.1 

 
Table 17. Accuracy, Probability of True Positive Detection, and Probability of False Positive 
Detection of JPSS ADP product for smoke and detection over water 

Type True 
positive 

False 
positive 

True 
negative 

False 
negative 

Accuracy 
(%) 

PTPD 
(%) 

PFPD 
(%) 

DUST 297 11 139 10 95.4 96.4 3.3 

SMOKE 601 507 7605 15 94.0 97.5 45.7 
 
 

4.3 Framework run and validation 

4.1.1. Framework run 
As shown in section 4.1, the ADP product algorithm was validated extensively.  However, this 
validation work was done with offline runs, i.e., running ADP product algorithm without integrating it 
into JPSS Reduction VIIRS product framework. Under the operational environment, ADP product 
algorithm will be running in the framework.  In general, the procedure for running the ADP product 
algorithm in the framework is as follows: first, common input radiance data are generated from proxy 
data set, the common dataset includes both the required input and ancillary data in a common data 
format, i.e., netCDF. Second, the aerosol detection algorithm is called according to the order of 
precedence. Finally, results from each product are written to an output file in netCDF format.  

4.1.2. Consistency tests with S-NPP VIIRS granules 
To test the offline runs with runs through integration of ADP product algorithm into the framework, 
comparisons were made between outputs from offline run with outputs from framework run with 
common input data and using the ADP algorithm. For tests shown below, S-NPP VIIRS observations 
from several granules were used as proxy for JPSS VIIRS, i.e., 750 m radiances from S-NPP VIIRS 
bands corresponding to JPSS VIIRS channels required by ADP product algorithm and cloud mask from 
S-NPP VIIRS cloud mask product.  Figure 32 and Figure 33 show the comparisons of offline 
smoke/dust mask with those from framework run for two cases, one for smoke event and one for dust 
outbreak . It is seen that Framework runs were able to reproduce the same results as those from offline 
run for both cases, with an agreement of about 99.5%.  
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Figure 32: Comparison of offline run with framework run for S-NPP VIIRS observation on August 3, 2014, 
UTC13:20. a) smoke/dust mask from framework run, b) smoke/dust mask from offline run.  

     
 
Figure 33:  Comparison of offline run with framework run form S-NPP VIIRS observation on February 13, 2014, 
UTC 03:25. a) smoke/dust mask from framework run, b) smoke/dust mask from offline run. 

4.1.3. Results from Framework run with global S-NPP VIIRS observation 
To further test the framework run, global S-NPP VIIRS observations for July 15, 2014 and July 16, 2014 
were selected as proxy input to run ADP product algorithm in the framework. Figure 34a and b show 
global smoke/dust mask product from framework run of the ADP product algorithm for these two 
consecutive days. For the purpose of comparison, OMPS Absorbing Aerosol Indexes for the 
corresponding two consecutive days are also showed in Figure 34b and c. In general, the framework run 
produced no abnormal smoke or dust pattern for each of these two days, and consistency is seen between 
results from these two consecutive days.  Furthermore, large smoke plumes resulting from biomass 
burning were identified over North America and Russia, and dusts from dust storm are shown over 
Sahara desert. Although the location of the dust and smoke plumes are consistent between the two days, 
there are differences in the amount of smoke and dust present.  This is very typical because while old 
fires die out, new fires form and dust transport occurs in the free troposphere moving it long distance 
over short time periods.  In addition, smoke/dust mask produced by ADP product from framework run 
has very similar pattern as OMPS Absorbing Aerosol Index (shown in Figure 34b and c), which is an 

a b 

a 
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indication of the presence of smoke/dust by using UV observations, even though it cannot differentiate 
between smoke and dust.  

 

 

 
 
Figure 34: Global smoke/dust mask from ADP product algorithm run in the framework for S-NPP VIIRS 
observations. a) July 15, 2014, b) July 16, 2014. Absorbing Aerosol Indexes from OMPS for these two days are also 
shown in c) and d).    

 

5. PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 
The ADP product algorithm is implemented sequentially.  Because some tests require ancillary data, 
the ancillary data (e.g., day/night, snow/ice, sun glint, and cloud/clear) need to be input first. To balance 
the efficiency and memory requirement for the full disk processing, a block of scanning pixels are read 
into a RAM buffer together instead of reading data pixel by pixel. 

5.2 Programming and Procedural Considerations 
The ADP product requires knowledge of spatial uniformity metrics that are computed for each pixel 
using pixels that surround it. Detection is performed separately for land and water. 
In addition, future temporal tests require information from the previous image.  Beyond this reliance, 
the ADP product is a pixel by pixel algorithm. 
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5.3 Quality Assessment and Diagnostics 
 
The following procedures are recommended for diagnosing the performance of the ADP product. 

• Monitor the percentage of pixels falling into each ADP product aerosol bin values. These values 
should be quasi-constant over a large area. 

• Monitor frequency of false positives of regions to assess need to have region specific thresholds 
developed and implemented. 

• Periodically image the individual test results to look for artifacts or non-physical behaviors. 
• Monitor retrievals over different surface (geographic) type for dependency of errors on surface 

brightness 
• Monitor spectral threshold values and provide a quality flag depending on how close the tests 

used in the ADP algorithm are to specified thresholds 
• Monitor retrievals for temporal consistency.  Are retrievals consistent from image to image? 

Qualify flag with value of 0/1/2 representing lower/medium/high confidence is generated according to 
how far the actual value for each test is from the predefined threshold.  

5.4 Exception Handling 
The quality control flags for VIIRS ADP product will be checked and inherited from the flagged Level 
1b sensor input data, including bad sensor input data, missing sensor input data and validity of each 
channel used; and will also be checked and inherited from the VIIRS cloud mask at each pixel. 
 
The ADP product also expects the Level 1b processing to flag any pixels with missing geolocation or 
viewing geometry information. 
 
The ADP product does check for conditions where the ADP product cannot be performed and generates 
quality control flags for snow/ice pixel, pixels with saturated channels; pixels missed geolocation or 
viewing geometry information.  

5.5 Algorithm Validations 
For pre-launch validation, ADP product algorithm will be extensively validated by using S-NPP VIIRS 
RGB images, S-NPP VIIRS aerosol product, AERONET observations, Vertical Feature Mask from 
CALIPSO. For post-launch validation, besides above-mentioned approach, field campaigns will also be 
carried out. Details on Algorithm Validation are given separately in the VIIRS ADP product algorithm 
testing and validation plan document. 

6. ASSUMPTIONS AND LIMITATIONS 
The following assumptions have been made in the current algorithm: 

• Calibrated and geo-located radiances in VIIRS channels as required by VIIRS ADP product 
algorithm as shown in Table 2 are available; 

• VIIRS cloud mask is available and adequate for the purpose of ADP algorithm 
• All the ancillary data are available. 

Limitations applying to current algorithm are: 
• Only for daytime 
• Smoke detection over land is limited to dark surface 
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• Not optimal for optically thin smoke and dust 
• No testing has been done to determine algorithm limitations if smoke and dust or other types of 

aerosols co-exist in the same pixel 

6.1 Performance 
The following assumptions are made in estimating the performance of ADP product algorithm: 

• smoke/dust mask from CALIPSO VFM represents the truth; 
• visual separation of smoke, dust and clear pixels from S-NPP VIIRS RGB image introduces 

negligible error;  
• Thresholds used in the current algorithm are tailored for S-NPP VIIRS channel specifications.  

Post –launch tuning of these thresholds will not affect the estimate of algorithm performance. 
• In case of VIIRS sensor degradation, product production might squeeze but studies will be 

carried out prior to the launch on the extent of the effect any changes to instrument 
characteristics will have on product quality.   

6.2 Assumed Sensor Performance 
VIIRS ADP product algorithm assumes the sensor will meet its current specifications and produce 
calibrated quality radiance in the required channels (see Table 2). As shown in section 3.4.1., impacts 
from instrument noise and calibration error can be mitigated by adjusting threshold accordingly. 
However, ADP product algorithm has low tolerance on missing channels. As discussed in above 
sections, ADP product algorithm selects the optimal channels or combination of channels to best 
separate signal of smoke/dust from others. Therefore, missing any channel will definitely downgrade the 
performance of the algorithm and eventually leads to failure if crucial channels are missing.  
In addition, ADP product algorithm will be dependent on the following instrumental characteristics. 

• The spatial uniformity tests in ADP product will be critically dependent on the amount of 
striping in the data.   

• Errors in navigation from image to image will affect the performance of the temporal tests. 

6.3 Pre-Planned Product Improvement 

6.1.1. Improvement 1  
The spectral screening thresholds are currently not a function of viewing and solar geometry.  Testing 
will be carried out to understand the dependencies of some of the smoke/dust tests on viewing and solar 
geometries.  Additional testing will also be done using simulated proxy data to determine VIIRS 
spectral thresholds and how robust these spectral thresholds are under different scenarios.  Based on 
these tests, algorithm could be improved.   
 
 

6.1.2. Improvement 2 
Validation of smoke/dust detection still remains a challenge at this stage. Besides the validation 
exercises that have already been completed, additional validations will be carried out. They include 
comparisons with the ground-based measurements and other satellite products. Validation with ground-
based measurement will take advantage of measurements from aerosol sampler in IMPROVE network 
and Angstrom exponent information from AERONET for any indications of smoke/dust particle over 
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some local and regional event. This, however, is not a direct comparison but an indirect subjective 
evaluation of smoke/dust detection product. For comparisons with other satellite products, Aerosol 
Index from OMI will be fully used to quantify the accuracy of smoke/dust products. 
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