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1. INTRODUCTION  
This document describes the Tropical Cyclone Formation Probability (TCFP) guidance 
product version 4.0, which provides hourly, machine-learning-generated probabilistic 
output for the likelihood of tropical cyclogenesis across the global oceans using a 
combination of geostationary satellite and numerical weather prediction information. 
NESDIS TCFP guidance product has roots in the Atlantic Tropical Cyclone Genesis 
Parameter (DeMaria et al. 2001). Schumacher et al. (2009) describe a 24-h product, later 
expanded to 48 hours that forms the basis for prior versions of TCFP. The fourth version 
of TCFP departs significantly from those methods, yet still provides probabilistic tropical 
cyclone genesis forecasts through 48h. NESDIS operationalized the fourth version in 
early 2024. 

1.1. Product Overview 

1.1.1. Product Description 

The TCFP product generates the probability of genesis within 500 km of a point over two 
24-h periods from the analysis time at grid points on a 1° × 1° domain that spans from 
0°E to 359°E and 45°S to 45°N. The probabilities originate from an equally-weighted 
consensus of calibrated machine learning models (i.e., linear discriminate analysis, 
logistic regression, random forest). The machine learning models use water vapor 
imagery from the global constellation of geostationary satellites to assess convective 
activity and large-scale subsidence, global sea surface temperature products for 
evaluating the available potential energy, and numerical weather prediction model-based 
information to determine the state of the large-scale environment by providing estimates 
of metrics such as vorticity, divergence, vertical wind shear, convective inhibition, and 
vertical instability. The product masks existing tropical cyclones using storm information 
from the NOAA National Weather Service National Hurricane Center in Miami, Florida, 
NOAA National Weather Service Central Pacific Hurricane Center in Honolulu, Hawaii, 
and Department of Defense Joint Typhoon Warning Center in Pearl Harbor, Hawaii. 
TCFP generates five types of output:  

1) Probabilistic output in Network Common Data Form (NetCDF),  
2) Probabilistic output in Keyhole Markup Language (KML),  
3) Probabilistic output in METOC TIFF (MTIF), 
4) Two-dimensional images of probabilities and input fields, and  
5) Time series images of spatially averaged probabilities and input fields with 

climatological reference. 

1.1.2. Product Requirements 

TCFP falls under the NESDIS Level Requirement (v1.0) [REQ-001]: “NESDIS will provide 
environmental data, information, products, services, and reports in the Foundational, 
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Geophysical, and Analytical thematic product areas.”, and specifically, SPSRB request 
#0806-003: “NESDIS/StAR Tropical Cyclone Formation Probability product extension to 
the S. Pacific and Indian Oceans.” The TCFP guidance product supports the “Tropical 
Cyclone Characteristics” category. Table 1-1 lists the TCFP guidance product NESDIS 
Product Baseline requirements. 
 

Table 1-1. NESDIS Product Baseline requirements for TCFP. 

 
Baseline Products Data Type Geographic Coverage Refresh Rate Latency 

Tropical Cyclone 
Formation 

Probability (TCFP) 
Gridded Global Ocean 6 hours 4 hours 

1.2. Satellite Instrument Description 

To provide a global capability, TCFP uses longwave infrared imagery centered on a water 
vapor absorption band available from the global constellation of geostationary satellites. 
Currently, digital imagery information (i.e. brightness temperatures) come from the U.S. 
NOAA Geostationary Operational Environmental Satellites (GOES)-R Series, Japan 
Meteorological Agency (JMA) third generation satellites Himawari-8 and Himawari-9, and 
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) 
Meteostat Second Generation (MSG) and Meteostat Third Generation (MTG). Each 
series/generation of satellite from these organizations have water vapor absorption bands 
with differing central wavelengths and spectral response functions. TCFP calibrates these 
imagery sources to the Gridded Satellite (GridSat-B1) Climate Data Record water vapor 
central wavelength near 6.7 μm (Knapp et al. 2011). 
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2. ALGORITHM DESCRIPTION 

2.1. Processing Outline 

The TCFP guidance product follows these steps in the list below and Fig. 2-1 when 
generating probabilistic output of tropical cyclogenesis. The algorithm: 

1) reads in each dataset (and calibrates if necessary), 
2) maps the data to the TCFP grid, 
3) performs area or azimuthal averaging of values at each grid point, 
4) calculates predictors and derived quantities, 
5) generates interim output files (the algorithm reuses interim output for low refresh 

rate data), 
6) predicts probabilistic output using predictors, and 
7) generates output data files and figures. 

 

 
Figure 2-1. A flow diagram of TCFP processing. 

2.2. Algorithm Input  

The TCFP guidance product uses input data from the global constellation of geostationary 
satellites, global sea surface temperature products, numerical weather prediction 
forecasts, operational tropical cyclone characteristics from the Automated Tropical 
Cyclone Forecasting (ATCF) system database files (Sampson and Schrader 2000), and 
look up tables containing climatology and model and calibration coefficients. Table 2-1 
contains a list of algorithm input with source information, spatial and temporal resolution, 
and description. Figure 2-2 shows the algorithm input start times relative when the 
algorithm run and processing create time. 
 

 
Figure 2-2. A diagram depicting the algorithm input start times relative to algorithm run 
and processing create times. Color progresses from light to dark throughout the day.  
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Table 2-1. TCFP guidance product algorithm input data with source, spatial and 
temporal coverage, and description. 

  Coverage  
Algorithm Input Source Spatial Temporal Description 
Water Vapor 
Imagery 
(~6.7 μm) 

NOAA GOES-R 
Series 
(GOES-16/-18) 

2 km 10-min full disk Provides global 
convective activity and 
subsidence data from 
longwave infrared 
imagery in the water 
vapor absorption band 
near 6.7 μm 

JMA Third 
Generation 
(Himawari-9) 

2 km 10-min full disk 

Meteosat Second 
Generation 
(Meteosat-9/-10/-11) 

3 km 15-min full disk 

Meteosat Third 
Generation 
(Meteosat-12) 

2 km 10-min full disk 

Numerical 
Weather 
Prediction 
Forecasts 

NOAA Global 
Forecast System 

0.25° × 0.25° Generated 
relative to 
synoptic hours  
(0000, 0600, 
1200, 1800 
UTC) and 
provides 
forecasts at 6 h 
intervals 

Provides horizontal and 
vertical temperature, 
relative humidity, and 
wind analysis and 
forecast information 

Sea Surface 
Temperature 

Canadian 
Meteorological 
Center Group for 
High Resolution Sea 
Surface Temperature 
Level 4  

0.01° × 0.01° Daily Provides a global 
blended (satellite and in 
situ) SST analysis  

Tropical Cyclone 
Characteristics 

NOAA National 
Hurricane Center, 
NOAA Central 
Pacific Hurricane 
Center, Dept. of 
Defense Joint 
Typhoon Warning 
Center from the 
Automated Tropical 
Cyclone Forecasting 
(ATCF) system 

Variable at 
0.10°  

Variable but at 
6 to 12 h  when 
available 

Tropical cyclone 
warning centers 
generate center 
position, maximum 
sustained wind 
(intensity), and 
development level (e.g., 
disturbance, tropical 
storm, tropical cyclone) 
characteristic data 

Ancillary Data TCFP Algorithm 
Developers 

1.00° × 1.00° 
(if applicable) 

6 h 
(if applicable) 

Climatology for 
algorithm predictors 
and machine learning 
model and water vapor 
calibration coefficient 
look up tables 
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2.3. Theoretical Description 

2.3.1. Physical Description 

The tropical cyclone research community has long documented the locations and the 
conditions that support tropical cyclone formation (Gray 1968, 1975). These works 
highlight the necessary environmental conditions associated with tropical cyclone genesis 
(e.g., warm sea surface temperatures, low vertical wind shear, low-level cyclonic rotation). 
Other works have added important information related to the role of convection in 
determining whether a tropical disturbance will further develop into a tropical cyclone 
(Zehr 1992). 

The TCFP guidance product captures the physical insights provided through the 
community into input predictors into statistical/machine learning algorithms to generate 
the likelihood of tropical cyclogenesis. The algorithm does this by using four data sources: 
1) geostationary satellite imagery, 2) global ocean product sea surface temperatures, 3) 
numerical weather prediction analysis and forecast output, 4) operational tropical cyclone 
characteristics. The geostationary satellite longwave infrared water vapor absorption 
band imagery captures both the convective activity associated with potential disturbances 
in the tropics and the subsidence associated with the subtropical ridge. Sea surface 
temperatures provide insight both into the energy source needed to develop tropical deep 
convection and maintain a disturbance as it forms into a tropical cyclone, as well as 
identifying regions where formation is not possible (Palmén 1948; Dare and McBride 
2011). Numerical weather prediction model analysis and forecast output provide the 
current and evolution of atmospheric state variables. From the state variables, the 
algorithm calculates large-scale environmental diagnostic metrics like vertical wind shear 
and vertical instability. These diagnostic quantities provide insight into the development, 
maintenance, and organization of tropical deep convection. Operational tropical cyclone 
characteristics provide locations of currently active tropical cyclones so that these 
systems can be removed from the product and not inappropriately flagged for genesis. 

With these physical predictors the algorithm uses linear discriminate analysis, logistic 
regression, and random forest classifiers to produce an equally-weighted consensus for 
the likelihood of tropical cyclogenesis. Each consensus member has strengths and 
weaknesses in producing realistic probabilities of genesis. The consensus approach 
balances these properties. Each statistical/machine learning algorithm has two versions 
that contribute to the consensus: 1) a global version that uses all global information in the 
training process and 2) a regional version that trains only on the unique characteristics 
contained within a region. Tropical cyclogenesis is a rare event, which means that the 
sample is imbalanced to null events. The global version of each algorithm benefits from 
the larger sample size, but can perform poorly in regions where conditions (e.g., 
thermodynamics) are consistently marginal. The regional version’s performance benefits 
from understanding these marginal conditions, but is hampered by its smaller training 
sample size. This global plus regional approach improves TCFP’s overall performance.  
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2.3.2. Mathematical Description 

TCFP version 4 changes the mathematical approach to calculating predictors including 
calculations involving area averaging, temperature gradient and advection, and vertical 
instability. TCFP also uses new predictors including shallow-layer vertical wind shear, 
generalized wind shear, and output from an entrained plume cloud model. The 
subsequent sections outline how the current version calculates the metrics used to create 
diagnostic fields and probabilistic formation output. Slocum et al. (2022) summarize  the 
calculation of these metrics, and provide a storm centric comparison between the NOAA 
National Centers for Environmental Prediction Global Forecast System and the European 
Centre for Medium-Range Weather Forecasts fifth generation atmospheric reanalysis. 
2.3.2.1. Azimuthal Averaging 
Previous versions of the algorithm take an area average in either a 5° × 5° box 
(Schumacher et al. 2009) or a 500 km radius circle. TCFP version 4 takes a different 
approach, akin to other tropical cyclone following statistical–dynamics aids such as the 
Statistical Hurricane Intensity Prediction Scheme (SHIPS; DeMaria and Kaplan 1994) and 
the associated SHIPS developmental dataset (CIRA 2024). Aids like SHIPS map data to 
a cylindrical grid and calculate quantities over varying areas. 0–1000-km or 0–500-km 
radius circles or 200–800-km annuli are typical azimuthal areas for dynamic, kinematic, 
and thermodynamic fields, respectively.  These areas are depicted in a storm centric 
perspective on Hurricane Harvey (2017) in Fig. 2-3. TCFP version 4 performs these same 
storm-centric calculations using analysis grid point locations instead of the storm centers 
(i.e., Eulerian vs Lagrangian as shown Fig. 2-4). 
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Figure 2-3. Graphic from Slocum et al. (2022) depicting GOES-16 10.3-μm longwave 
infrared observations at 0000 UTC 26 Aug 2017 showing Hurricane Harvey prior to 
landfall with the area-averaging regions for large-scale dynamics from 0 to 1000 km 

(blue circle), thermodynamics from 200 to 800 km (red annulus), and kinematics from 0 
to 500 km (yellow circle). Published 2022 by the American Meteorological Society. 

 
Figure 2-4. The difference between azimuthal means for TCFP as a fix grid product in 
cyan (i.e., Eulerian) vs a storm position-following product like SHIPS in magenta (i.e., 

Largranian). The tan rings demonstrate two cases with averaging bands 100 km in 
radius wide around points to show overlap. 
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2.3.2.2. Geostationary Satellite and Ocean Predictors 
Geostationary Satellite 
The TCFP guidance product calculates simple average-based metrics for geostationary 
satellite predictors. Prior to calculating the metrics, TCFP intercalibrates the geostationary 
satellite imagery. The global constellation of geostationary satellites is inconsistent with 
respect to the central wavelengths and spectral response functions available in the 
longwave infrared water vapor absorption bands. For TCFP, the Gridded Satellite 
(GridSat-B1) Climate Data Record provides a baseline product to attempt to calibrate 
real-time imagery (Knapp et al. 2011). Using the water vapor central wavelength near 6.7 
μm, one of each of the on-orbit imager’s water vapor channels is regressed to 6.7 μm by 
solving 

𝑚𝑖𝑛
!
||𝑋𝑤 − 𝑦||"" 

and applying the correction with 
𝑦 = 	𝑋𝑤 + 𝐶, 

where 𝑋 is the input brightness temperature at a central wavelength in a water vapor 
absorption band, 𝑦 is the target water vapor brightness temperature near 6.7 μm, 𝑤 is the 
slope, and 𝐶 is the 𝑦 intercept. With the intercalibrated brightness temperature values, 
TCFP calculates two input area-averaged predictors: 

1) cloud-cleared water vapor brightness temperature within 500 km of the grid point, 
and 

2) percent of pixels below −40°C within 500 km of the grid point. 
For the cloud-cleared water vapor brightness temperature within 500 km of the grid point, 
any points less than −40°C are set to −40°C. 
Ocean Predictors 
As an ocean predictor, TCFP calculates the sea surface temperature averaged within 50 
km of a grid point using the Canadian Meteorological Center Group for High Resolution 
Sea Surface Temperature Level 4. For the developmental dataset, TCFP blends the 
operational sea surface temperature product with the daily and weekly Optimum 
Interpolated Sea Surface Temperature product (Reynolds 1988). 
2.3.2.3. Large-scale Environment Predictors 
The product uses two forms of the large-scale environmental predictors. TCFP calculates 
the first form directly from the model fields using azimuthal averaging (see the top half of 
Table 2-2). These predictors include environmental mean sea level pressure, divergence, 
vorticity, vertical layer averaged relative humidity, and temperature anomaly. 

TCFP derives the second form of environmental quantities using a model-based 
sounding. These sounding-derived predictors include layered and generalized vertical 
wind shear, thermal wind, vertical instability, and entrained plume cloud model output 
(e.g., convective inhibition, mass-weighted vertical velocity). To provide representative 
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examples, TCFP sample derivations use Table 2-3, which contains the mean Tropical 
North Atlantic Ocean atmospheric sounding from Dunion (2011). 
 

Table 2-2. TCFP large-scale environment predictors. 

Predictor Units Type Description 
Mean Sea Level 
Pressure hPa Calculated 200–800-km average mean sea level 

pressure 
Divergence s−1 Calculated 0–1000-km average 200-hPa divergence 

Vorticity s−1 Calculated 0–1000-km average 200- and 850-hPa 
vorticity 

Temperature 
Anomaly °C Derived 

0–100-km, 400–300-hPa temperature 
anomaly with respect to 1500-km mean 
temperature 

Layered Vertical 
Wind Shear kt Derived 

The wind difference between two levels 
that is defined as the 0–500-km radius 
850–200-hPa deep-layer shear and 850–
500-hPa shallow-layer shear 

Generalized 
Vertical Wind 
Shear 

kt Derived 
The 850–200-hPa mass-weighted deviation 
from the mean wind profile calculated from 
0–500-km radius 

Temperature 
Gradient °C m−1 Derived 

The magnitude of the temperature gradient 
between 850 and 700 hPa averaged from 0 
to 500 km estimated from the geostrophic 
thermal wind 

Temperature 
Advection °C s−1 Derived 

The temperature advection between 850 
and 700 hPa averaged from 0 to 500 km 
estimated from the geostrophic thermal 
wind 

Vertical Instability °C Derived 

The mass-weighted summation from the 
surface to the level of neutral buoyancy of 
the difference between the surface 
equivalent potential temperature and 
saturated equivalent potential temperature 

Convective 
Inhibition J kg−1 Derived 

The energy preventing an air parcel from 
rising from the surface to the level of free 
convection calculated from the entrained 
plume cloud model 

Average Vertical 
Velocity m s−1 Derived 

The average vertical velocity of an air 
parcel from rising from the surface to the 
level of neutral buoyancy calculated from 
the entrained plume cloud model 
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Table 2-3. Mean Tropical North Atlantic Ocean atmospheric sounding of pressure, 
temperature, relative humidity, wind speed, and wind direction adapted from Table 1 in 

Dunion (2011). Published 2011 by the American Meteorological Society. 

Pressure Temperature Relative 
Humidity 

Wind 
Speed Direction 

(hPa) (°C) (%) (kt) (°) 
50 −63.1 25.4 25.0 88 

100 −74.4 32.9 7.8 70 
150 −67.0 33.9 6.6 321 
200 −54.4 34.2 7.4 304 
250 −42.6 34.8 4.7 302 
300 −32.6 34.5 2.1 313 
400 −17.3 37.5 2.3 81 
500 −6.5 41.7 4.5 93 
600 1.7 48.8 6.2 100 
700 9.1 54.4 8.3 100 
850 17.4 76.4 10.3 101 
925 21.7 83.2 10.5 100 

1000 26.4 81.4 6.4 92 
1015.3 

(Surface) 26.9 81.3 3.9 91 

 
Temperature anomaly 
Tropical and subtropical cyclones exhibit symmetric or asymmetric warm-core anomalies 
through the middle to upper troposphere that result from the vortex structure and 
convection, where the temperature difference between some central point and the 
surrounding environment represent the warm core. As cyclones strengthen, the warm-
core anomaly increases in magnitude relative to the surrounding environment and 
expands in size. Frank (1977) shows that the temperature perturbation from the tropical 
cyclone extends 1500 km from the center of the tropical cyclone. To calculate the warm-
core anomaly, TCFP subtracts the 1500-km mean 400–300 hPa temperature profile from 
the 0–100-km, 400–300-hPa temperature profile to calculate a 400–300-hPa temperature 
anomaly. 
Vertical Wind Shear 
The change in wind speed and direction as a function of height can hinder the 
organization of deep convection. To measure the changes in the profile, vertical wind 
shear metrics capture these in the vertical wind profile. TCFP calculates two forms of 
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vertical wind shear. The first is the classic layered shear in which the magnitude of one 
layer is subtracted from another. The algorithm calculates two layered wind shears: 

1) deep-layer shear from 200–850 hPa and 
2) shallow-layer shear from 500–850 hPa. 

The formula for layered shear is 
SHR = 	 [(𝑢# − 𝑢$)" + (𝜈# − 𝜈$)"]%/", 

where 𝑢 is the zonal wind component, 𝜈 is the meridional wind component, subscript 𝑡 is 
the top of the layer (i.e., 200 or 500 hPa), and subscript 𝑏 is the bottom of the layer (i.e., 
850 hPa). 

The second is the generalized wind shear (Knaff et al. 2005), which TCFP calculates 
using 

𝐺 = 4	?𝑤' 	@A𝑢' − 𝑢BC
" + A𝜈' − 𝜈̅C

"E
%/"

,
(

)*%

 

where 𝑖 is the pressure level index for pressure values 𝑝 from 850 to 200 hPa, 𝐼 is the 
total number of pressure levels, 𝑤 is the mass weight for the pressure level 𝑝, and 𝑢B and 
𝜈̅ are the column-averaged winds. 

Figure 2-5 shows a hodograph of the vertical wind profile from the mean Tropical North 
Atlantic Ocean sounding in Table 2-3 (blue curve) and the vectors for the deep-layer shear 
(red), shallow-layer shear (orange), , and mean wind (yellow). From Table 2-3, TCFP 
would calculate 17.3, 5.9, and 17.6 kt as the values of deep-layer, shallow-layer, and 
generalized vertical wind shear, respectively. 

 
Figure 2-5. A hodograph depicting the vertical wind profile from 1015 to 100 hPa (blue-
shaded curve and black dots) and vectors for the 850–200-hPa deep-layer shear (red), 
850–500-hPa shallow-layer shear (orange), and 850–200-hPa mass-weighted mean 

wind (yellow). 
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Temperature Gradient and Advection 
TCFP version 4 updated the approach to calculating temperature gradient and advection. 
TCFP uses the geostrophic thermal wind equation to calculate the temperature gradient 
and advection where each takes the form 

TADV = 	−𝑢B
𝜕𝑇
𝜕𝑥 − 𝜈̅

𝜕𝑇
𝜕𝑦 

TGRD = 	 PQ
𝜕𝑇
𝜕𝑥R

"

+ Q
𝜕𝑇
𝜕𝑦R

"

S
%/"

, 

where 𝑢B and 𝜈̅ are the average 700- and 850-hPa winds  and 
𝜕𝑇
𝜕𝑥 = −

𝑓
𝑅+

𝜕𝜈
𝜕 ln 𝑝 

𝜕𝑇
𝜕𝑦 = −

𝑓
𝑅+

𝜕𝑢
𝜕 ln 𝑝, 

where 𝑓 is the Coriolis parameter as a function of TCFP grid point and 𝑅+ is the universal 
gas constant. 
Vertical Instability 
TCFP uses several metrics to understand the potential to develop and maintain deep 
convection. The vertical instability metric is one example. To calculate vertical instability, 
TCFP computes the surface equivalent potential temperature and the saturated 
equivalent potential temperature with the formulas in Bolton (1980). Then, TCFP 
calculates a summation of the difference between the surface equivalent potential 
temperature and the saturated equivalent potential temperature to yield the vertical 
instability as defined by 

𝑆 =?𝑤'	A𝜃,,	SFC − 𝜃,,'∗ C,
(

)*%

 

where 𝑖 is the pressure level index for pressure values 𝑝 from the surface (SFC) to the 
level of neutral buoyancy (LNB), 𝑤 is the mass weight for the pressure level 𝑝, 𝜃,,	SFC is 
the surface equivalent potential temperature, 𝜃,,'∗  is the saturated equivalent potential 
temperature profile. Note that 𝑆 is negative from the surface to the level of free convection 
and positive from the level of free convection to the level of neutral buoyancy. 

Using the vertical profile of temperature along with the surface relative humidity listed 
in Table 2-3 as an example, TCFP calculates the vertical instability as follows. TCFP 
determines the gray area shown in Fig. 2-6 located between the surface to the level of 
neutral buoyance by using the difference between the surface equivalent potential 
temperature (𝜃,,	SFC), the black line, and vertical profile of saturated equivalent potential 
temperature (𝜃,∗), the blue line. In this example as shown in Fig. 2-6, TCFP would 
calculate a vertical instability value of 6.3 °C. 
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Figure 2-6. Vertical profiles of potential temperature (yellow curve), equivalent potential 
temperature (red curve), and saturated equivalent potential temperature (blue curve) 
based on the mean Tropical North Atlantic Ocean atmospheric sounding in Table 2-2. 

The black line indicates the value of the surface equivalent potential temperature 
(𝜃,,	SFC).  The gray shaded area is the area used to calculate the vertical instability 

predictor. The gray dashed lines from bottom to top represent the lifted condensation 
level, level of free convection, and level of neutral buoyancy. 

Entrained Plume Cloud Model 
Vertical instability is one measure necessary for understanding the conduciveness of the 
environment for developing and maintaining deep convection.  TCFP employs other 
measures as well, namely, metrics from a parcel-based, Lagrangian cloud model 
(DeMaria 2009) used in tropical cyclone following statistical–dynamical aids. DeMaria 
(2009) bases the cloud model on the Simpson and Wiggert (1969) entraining plume 
model, but adds the thermodynamics and bulk microphysics of Ooyama (1990), which 
allow accounting for the water and ice phase condensate parcel weighting. TCFP uses 
model-based profiles of temperature and relative humidity as input into the cloud model. 
TCFP assumes the following assumptions on air parcel’s initial conditions: 15 m s−1 initial 
parcel vertical velocity [consistent with SHIPS (CIRA 2024), but an increase from the 8 m 
s−1 used in DeMaria (2009)], 500 m parcel radius, 0.1 nondimensional entrainment 
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coefficient, and 1/600 s−1 precipitation removal rate. From these assumptions, Fig. 2-7 
shows the environmental temperature from Table 2-3 along with the cloud model 
calculated parcel virtual potential temperature and parcel vertical velocity as a function of 
pressure. For the example sounding (Table 2-3), TCFP calculates an average vertical 
velocity value of 6.6 m s−1 and a convective inhibition value of 29.8 J kg−1. 

 
Figure 2-7. Vertical profiles of the (left) environmental temperature (yellow curve) and 

parcel virtual temperature (red curve) on a skew-T log-p diagram and (right) parcel 
vertical velocity as calculated by the entrained plume cloud model. 

2.3.2.4. Predicting Probabilities 
TCFP uses an equally-weighted consensus of probabilistic statistical/machine learning 
algorithms that are trained with global and regional versions (Table 2-4). Here, TCFP 
employs three algorithms to estimate probabilities, specifically, linear discriminant 
analysis, logistic regression, and random forest classifiers.  For training, the TCFP 
algorithm uses the implementations of the statistical/machine learning algorithms 
available through scikit-learn (Pedregosa et al. 2011) and generates output using Fortran-
based drivers for the algorithms.  
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Linear Discriminant Analysis 
Linear Discriminant Analysis is a dimensionality reduction technique applicable to 
classification problems. LDA strives to use predictor information to maximize class 
separation while projecting the predictor onto a lower dimensional. With the calculated 
weights, the probability of a class is determined with 

log 𝑝(𝑦) = 𝑘|𝑋)) = 𝑤3#𝑋) +𝑤3+ + 𝐶,	 
where 𝑦) = 𝑘 is the sample classification (𝑘 = 1 for a ‘yes’ tropical cyclone genesis event), 
𝑋 is a vector of input features, 𝑤 are the vector of weights for each input feature, and 𝐶 is 
a constant. 
Logistic Regression 
Logistic regression attempts to generate the log-odds of an event as a linear combination 
of predictor information. Because of its formulation, logistic regression generates the true 
likelihood of an event unlike other machine learning or statistical methods that generate 
the proportion of a training sample that is similar to an event’s input predictor information. 
To generate the probability of a class, the following is used: 

𝑝(𝑦) = 𝑘|𝑋)) =
1

1 + exp	(−𝑋)𝑤3 −𝑤3+)
, 

where 𝑦) = 𝑘 is the sample classification (𝑘 = 1 for a ‘yes’ tropical cyclone genesis event), 
𝑋 is a vector of input features, 𝑤 are the vector of weights for each input feature. 
Random Forest 
The random forest algorithm (Breiman 2001) is an ensemble of decision trees where each 
decision tree may see a random subset of input predictor or subset of the training sample 
to increase the variance of the ensemble. Decision trees attempt to split the training 
samples into classifications (‘yes’ tropical cyclone genesis or ‘no’ genesis) using the 
information. In making the split, the tree uses Gini impurity where impurity is measured 
as how “clean” the split is in correctly assigning ‘yes’ and ‘no’ cases to a new group. The 
split occurs at a node. The tree reaches terminal node either by an algorithm setting or 
when only a single sample remains in the last node. 

The probabilistic from the random forest is the mean of the proportion of samples 
representing the class k at the terminal mode in the individual decision trees. 

𝑝(𝑦) = 𝑘|𝑋)) =
1
𝑀 ?

1
𝑛4

? 𝐼(𝑦 = 𝑘)
5∈7!

8

4*%

, 

where 𝑦) = 𝑘 is the sample classification (𝑘 = 1 for a ‘yes’ tropical cyclone genesis event), 
𝑋 is a vector of input features, 𝑀 is the total number of decision trees, 𝑚 is the decision 
tree terminal node, 𝑛 is the number of samples in the node, and 𝐼 is the input training data 
residing at the terminal node. 
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Calibration 
Before constructing the equally weighted consensus, the probabilistic output needs to be 
calibrated so that the output from each statistical/machine learning method represents 
the true likelihood of the event rather than the proportion of the training sample (e.g., 
random forest). After calibration, the individual consensus members’ predicted probability 
values align more closely with the observed relative frequency of the event [this is often 
visualized with calibration curves, reliability diagrams, or attribute diagrams (for details, 
see Wilks 2019)]. 

Here, TCFP uses sigmoid regression [also called Platt’s logistic model (Platt 2000)] 
to calibrate model probabilities. The below equation defines the Platt’s logistic model:  

𝑝(𝑦) = 1|𝑓)) =
1

1 + exp	(𝐴𝑓) + 𝐵)
, 

where 𝑓 is the algorithm output probability, 𝐴 and 𝐵 are the sigmoid regression 
coefficients, and 𝑝(𝑦 = 1|𝑓) is the calibrated probability. 
Subregion Formation Probability 
For the time series output, TCFP calculates area weighted averages of quantities within 
subregions (discussed in section 2.4). For probabilities, this should not be done as a 
straight average when determining the probability of tropical cyclone formation within the 
subregion. Instead, TCFP uses the Additive Law of Probability where the union of the set 
follows 𝑝(𝐴	or	𝐵) 	= 	𝑝(𝐴) 	+ 	𝑝(𝐵) 	− 	𝑝(𝐴	and	𝐵), where 𝑝(𝐴	and	𝐵) = 𝑝(𝐴) × 𝑝(𝐵) is 
nonzero. To expand this beyond the probability of two points, 𝐴 and 𝐵, to all points in the 
subregion, TCFP calculates the probability as 

𝑝9 =g[1 − 𝑤)𝑝(𝑖)]
(

)*%

, 

where 𝑝9 is the probability of formation in a subregion, 𝑝(𝑖) is the probability of formation 
at a TCFP domain grid point within the subregion, 𝑤) is the area weight based on the 
cosine of latitude, and 𝐼 is the total number of points within the subregion. 

2.4. Algorithm Output  

TCFP generates five types of output: 1) probabilistic output in Network Common Data 
Form (NetCDF), 2) probabilistic output in Keyhole Markup Language (KML), 3) 
probabilistic output in METOC TIFF (MTIF), 4) two-dimensional images of probabilities 
and input fields, 5) time series images of spatially averaged probabilities and input fields 
with climatological reference. For probabilistic output, note that data points with active 
tropical cyclones are removed using tropical cyclone characteristic information from the 
NOAA National Hurricane Center, NOAA Central Pacific Hurricane Center, and 
Department of Defense Joint Typhoon Warning Center. 

On the landing page for the real-time TCFP product, TCFP displays global formation 
probability as shown in Fig. 2-8. For the two-dimensional images of probabilities, input 
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fields, and time series of spatially averaged probabilities and input fields with 
climatological reference, TCFP divides the global oceans into large-area regions. 
Examples are provided in Fig. 2-9, and subregions, Fig. 2-10, within each large area (see 
Table 2-4). Both options allow product users to diagnose conditions impacting tropical 
cyclone formation and better cater to the user’s individual needs. For the physical fields 
in the two-dimensional and time series plots, TCFP displays nine quantities as follows: 

1) cloud-cleared water vapor brightness temperature (Fig. 2-11), 
2) water vapor percent pixel below than −40°C (Fig. 2-12), 
3) sea surface temperature (Fig. 2-13), 
4) mean sea level pressure (Fig. 2-14), 
5) 850-hPa lower-tropospheric vorticity (Fig. 2-15), 
6) 850-hPa lower-tropospheric divergence (Fig. 2-16), 
7) generalized vertical wind shear (Fig. 2-17), 
8) vertical instability (Fig. 2-18), and 
9) thermal wind temperature advection (Fig. 2-19). 

TCFP provides three types of two-dimensional plots for each physical field. These include 
the current values (averaged over the appropriate period, e.g., 0 to 24 h and 24 to 48 h), 
the two-week rolling mean of the climatological values, and the anomalies between the 
current and climatological values. On the time series plots, TCFP shows the 6-hourly 
values as a scatter plot in time, a 14-day running mean of the values as a curve (this 
dampens some of the diurnal variability in predictors like the vertical instability), and 
climatological values at the 10th, 30th, 50th, 70th, 90th percentiles of the two-week 
running mean as gray shading. 
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Figure 2-8. Global 0 to 24 h TCFP guidance product output tropical cyclogenesis 

probabilities on 1200 UTC 9 May 2023. 

 
Figure 2-9. TCFP domain averaging large-scale regions. 

 

 
Figure 2-10. TCFP domain averaging subregions.   
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Table 2-4. TCFP coefficient and averaging region and subregion names along with 
general longitudinal and latitudinal extent. 

   General Geographical Extent 
   Longitudinal  Latitudinal 
Name Type Region West East  North South 
North Atlantic Region — 100°W  20°E  45°N  0° 
South Atlantic Region — 65°W  20°E  0°  45°S 
Eastern North Pacific Region — 180° 75°W  45°N 0° 
Western North Pacific Region — 105°E  180°  45°N 0° 
North Indian Region — 20°E 105°E  45°N  0° 
South Indian Region — 20°E  105°E  0° 45°S 
Southern Pacific Region — 105°E  65°W  0° 45°S 
Tropical Atlantic Subregion North Atlantic 60°W 20°E  45°N 20°N 
Caribbean Subregion North Atlantic 90°W 60°W  20°N 0° 
Gulf of Mexico Subregion North Atlantic 100°W 80°W  45°N 15°N 
East Coast Subregion North Atlantic 85°W 60°W  45°N 20°N 
Subtropical Atlantic Subregion North Atlantic 60°W 20°E  20°N 0° 
Southern Atlantic Subregion South Atlantic 65°W 20°E  0° 45°S 
Northeast Pacific Subregion Eastern North Pacific 140°W 75°W  45°N 0° 
North Central Pacific Subregion Eastern North Pacific 180° 140°W  45°N 0° 
Western North Pacific I Subregion Western North Pacific 150°E 180°  25°N 0° 
Western North Pacific II Subregion Western North Pacific 120°E 150°E  25°N 0° 
Western North Pacific III Subregion Western North Pacific 105°E 120°E  25°N 0° 
Western North Pacific IV Subregion Western North Pacific 105°E 150°E  45°N 25°N 
Western North Pacific V Subregion Western North Pacific 150°E 180°  45°N 25°N 
Southeast Pacific Subregion Southern Pacific 180° 65°W  0° 45°S 
Southwest Pacific Subregion Southern Pacific 105°E 180°  0° 45°S 
Bay of Bengal Subregion North Indian 75°E  105°E  45°N 0° 
Arabian Sea Subregion North Indian 20°E  75°E  45°N 0° 
Southern Indian Subregion South Indian 20°E  105°E  0° 45°S 
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Figure 2-11. 0- to 500-km averaged cloud-cleared water vapor brightness temperature 

centered over the Atlantic Ocean for (left) real time, (center) climatology, and (right) 
anomaly on 1200 UTC 9 May 2023. 

 
Figure 2-12. 0- to 500-km averaged water vapor percent pixel below −40°C centered 

over the Atlantic Ocean for (left) real time, (center) climatology, and (right) anomaly on 
1200 UTC 9 May 2023. 

 
Figure 2-13. 0- to 50-km averaged sea surface temperature centered over the Atlantic 
Ocean for (left) real time, (center) climatology, and (right) anomaly on 1200 UTC 9 May 

2023. 
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Figure 2-14. 200- to 800-km averaged environmental mean sea level pressure 0- to 50-

km averaged sea surface temperature centered over the Western Pacific Ocean for 
(left) real time, (center) climatology, and (right) anomaly on 1200 UTC 9 May 2023. 

 
Figure 2-15. 0- to 1000-km averaged 850-hPa lower-tropospheric vorticity centered over 
the Western Pacific Ocean for (left) real time, (center) climatology, and (right) anomaly 

on 1200 UTC 9 May 2023. 

 
Figure 2-16. 0- to 1000-km averaged 850-hPa lower-tropospheric divergence centered 

over the Western Pacific Ocean for (left) real time, (center) climatology, and (right) 
anomaly on 1200 UTC 9 May 2023. 
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Figure 2-17. 0- to 500-km generalized vertical wind shear centered over the Eastern 

and Central Pacific Ocean for (left) real time, (center) climatology, and (right) anomaly 
on 1200 UTC 9 May 2023. 

 
Figure 2-18. 200- to 800-km vertical instability centered over the Eastern and Central 

Pacific Ocean for (left) real time, (center) climatology, and (right) anomaly on 1200 UTC 
9 May 2023. 

 
Figure 2-19. 0- to 500-km 850-hPa thermal wind temperature advection centered over 
the Indian Ocean for (left) real time, (center) climatology, and (right) anomaly on 1200 

UTC 9 May 2023. 
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2.5. Performance Estimates 

2.5.1. Test Data Description 

TCFP includes unit and integration tests for the algorithm. The unit tests cover calculating 
each physical parameter and use validation data from the mean Tropical North Atlantic 
sounding (Table 2-3) and validation from the literature (e.g., Bolton 1980). These unit 
tests cover a variety of conditions and extremes to ensure expected algorithm output. 
Integration tests include sample cases from the TCFP developmental dataset to make 
sure that the algorithm creates consistent output between multiple computational 
environments. 

2.5.2. Sensor Effects 

The current version does not take into account sensor effects such as limb corrections or 
solar corrections. Outside of overlap, any sensor effects (e.g., limb effects, striping, stray 
light) may negatively impact the probabilistic output. 

2.5.3. Retrieval Errors 

The current version does not handle retrieval errors contained in the radiance data from 
the water vapor absorption band longwave infrared observations from the global 
constellation of geostationary satellites. Any of these errors will propagate to the output 
from the TCFP product. Internally, errors are related to the training of the individual 
statistical/machine learning models within the algorithm. These errors are expected to 
remain consistent with those in the training process. 

2.6. Practical Considerations 

2.6.1. Numerical Computation Considerations 

The TCFP algorithm uses the Python programming language as the algorithm driver and 
for algorithm input and output. From the Python driver, TCFP calls shared object libraries 
for the azimuthal area averages, calculating derived predictors, and statistical/machine 
learning model predictions, which are coded in the Fortran 2018 standard (ISO 2018). 
Both the Python driver and Fortran-generated shared object libraries use aspects of 
parallel programming. Python uses task parallelism in processing various input files 
simultaneously. The Fortran routines use Open Multi-Processing (OpenMP) auto 
parallelization features in the Fortran 2018 standard as implemented by the GNU 
Compiler Collection. At each step of processing the TCFP algorithm generates interim 
output. TCFP uses these interim output files to avoid duplicative calculations on the same 
fields (e.g., sea surface temperature and model) and can be used for diagnostic purposes. 
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2.6.2. Programming and Procedural Considerations 

The Delivered Algorithm Package contains details about implementation with respect to 
compiler, programming language, and third-party community package versions. The 
algorithm is built on a new system using CMake to build the Fortran 2018 routines into a 
shared object library that can then be called by the Python driver scripts. Data input and 
output is controlled using a combination of environmental variables and configuration files 
in the Tom's Obvious, Minimal Language (TOML) configuration file format. 

2.6.3. Quality Assessment and Diagnostics 

Since TCFP is a derived product, the input data quality assurance ensures the product 
output quality. The algorithm has unit and integration tests to ensure that if the input data 
are of expected quality that the output should fall within expected parameters and 
behaviors. For internal purposes, the algorithm has multiple verbosity modes to monitor 
all aspects of the algorithm processing. Externally, the algorithm contains quality flags to 
highlight potential issues related to input data. 

2.6.4. Exception Handling 

TCFP raises all exceptions using the Python programming languages built-in exceptions. 
In the case that an error occurs in the Fortran-based shared object library the Fortran will 
return bad data values for the Python driver to interpret and raise the appropriate errors. 

2.7. Validation 

TCFP defines tropical cyclogenesis as a 0 to 500 km radius region around the formation 
location in the ATCF tropical cyclone characteristics best-track database files (Sampson 
and Schrader 2000) provided by the NOAA National Hurricane Center, NOAA Central 
Pacific Hurricane Center, and Department of Defense Joint Typhoon Hurricane Center. 
This 0 to 500 km radius region counts as a ‘yes’ and any TCFP guidance product domain 
point that falls within this circle is considered as a ‘yes’ for TC formation (>34 kt). The 
TCFP guidance product output grid point probabilities can then be evaluated using 
various verification statistics.  

The first is the Brier score. The Brier score is to classification forecasts as the mean 
square error is to regression forecasts and is defined as 

BS =
1
𝑛?(𝑦) − 𝑝))"

:

)*+

, 

where 𝑛 is the number of forecasts (both in time and on the TCFP grid), 𝑦) is the verified 
‘yes’ forecast on the TCFP grid, and 𝑝) is the probabilistic output from the TCFP algorithm. 
Brier score is a loss metric where smaller is better. 
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The second approach is to convert the probabilistic forecast to a nonprobablistic 
forecast by setting an optimal probability threshold as a binary ‘yes’ forecast (Wilks 2019). 
In nonprobablistic form, TCFP can be evaluated using performance metrics from a 2 × 2 
contingency table or confusion matrix where 𝑎 represents the true, 𝑏 the false positives, 
𝑐 the false negatives, and 𝑑 the true. For rare events, the Peirce skill score is a useful 
metric, which is defined as  

PSS = 𝐻 − 𝐹, 
where 𝐻 = 𝑎/(𝑎 + 𝑐) is the hit rate and 𝐹 = 𝑏/(𝑏 + 𝑑) is the false alarm rate (not to be 
confused with the false alarm ratio). See Wilks (2019) for a discussion on the Peirce skill 
score and other contingency table metrics. 
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3. ASSUMPTIONS AND LIMITATIONS  

3.1. Performance Assumptions 

TCFP assumes that algorithm input data is of consistent quality and timeliness. 
Degradations to input data either due to satellite instruments needing recalibration or 
experiencing hardware issues (e.g., GOES-17 loop heat pipe subsystem issue) and 
increased latency causing a reliance on old data will cascade to TCFP. Errors in model 
output such as poorly analyzed or forecast large-scale wind fields will directly impact 
vertical wind shear calculations and impact output probabilities. TCFP does include 
quality flags to warn of some potential issues. 

3.2. Potential Improvements 

Tropical cyclone warning centers desire skillful formation probability information out to 
seven days. Future versions of TCFP will attempt to generate skillful guidance beyond 
the current 48 h product to provide guidance at longer forecast lead times. 
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